-
Brendon Murphy authored
[[Split portion of a mixed commit.]]
Brendon Murphy authored[[Split portion of a mixed commit.]]
object_cloud_gen.py 25.07 KiB
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
bl_info = {
"name": "Cloud Generator",
"author": "Nick Keeline(nrk)",
"version": (1, 0),
"blender": (2, 5, 9),
"location": "View3D > Tool Shelf > Cloud Generator Panel",
"description": "Creates Volumetric Clouds",
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
"Scripts/Object/Cloud_Gen",
"tracker_url": "https://projects.blender.org/tracker/index.php?"
"func=detail&aid=22015",
"category": "Object"}
import bpy
from bpy.props import BoolProperty, EnumProperty
from bpy.types import Operator, Panel
# This routine takes an object and deletes all of the geometry in it
# and adds a bounding box to it.
# It will add or subtract the bound box size by the variable sizeDifference.
def getMeshandPutinEditMode(scene, object):
# Go into Object Mode
bpy.ops.object.mode_set(mode='OBJECT')
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object
object.select = True
scene.objects.active = object
# Go into Edit Mode
bpy.ops.object.mode_set(mode='EDIT')
return object.data
def maxAndMinVerts(scene, object):
mesh = getMeshandPutinEditMode(scene, object)
verts = mesh.vertices
#Set the max and min verts to the first vertex on the list
maxVert = [verts[0].co[0], verts[0].co[1], verts[0].co[2]]
minVert = [verts[0].co[0], verts[0].co[1], verts[0].co[2]]
#Create Max and Min Vertex array for the outer corners of the box
for vert in verts:
#Max vertex
if vert.co[0] > maxVert[0]:
maxVert[0] = vert.co[0]
if vert.co[1] > maxVert[1]:
maxVert[1] = vert.co[1]
if vert.co[2] > maxVert[2]:
maxVert[2] = vert.co[2]
#Min Vertex
if vert.co[0] < minVert[0]:
minVert[0] = vert.co[0]
if vert.co[1] < minVert[1]:
minVert[1] = vert.co[1]
if vert.co[2] < minVert[2]:
minVert[2] = vert.co[2]
return [maxVert, minVert]
def makeObjectIntoBoundBox(scene, object, sizeDifference, takeFromObject):
# Let's find the max and min of the reference object,
# it can be the same as the destination object
[maxVert, minVert] = maxAndMinVerts(scene, takeFromObject)
#get objects mesh
mesh = getMeshandPutinEditMode(scene, object)
#Add the size difference to the max size of the box
maxVert[0] = maxVert[0] + sizeDifference
maxVert[1] = maxVert[1] + sizeDifference
maxVert[2] = maxVert[2] + sizeDifference
#subtract the size difference to the min size of the box
minVert[0] = minVert[0] - sizeDifference
minVert[1] = minVert[1] - sizeDifference
minVert[2] = minVert[2] - sizeDifference
#Create arrays of verts and faces to be added to the mesh
addVerts = []
#X high loop
addVerts.append([maxVert[0], maxVert[1], maxVert[2]])
addVerts.append([maxVert[0], maxVert[1], minVert[2]])
addVerts.append([maxVert[0], minVert[1], minVert[2]])
addVerts.append([maxVert[0], minVert[1], maxVert[2]])
#x low loop
addVerts.append([minVert[0], maxVert[1], maxVert[2]])
addVerts.append([minVert[0], maxVert[1], minVert[2]])
addVerts.append([minVert[0], minVert[1], minVert[2]])
addVerts.append([minVert[0], minVert[1], maxVert[2]])
# Make the faces of the bounding box.
addFaces = []
# Draw a box on paper and number the vertices.
# Use right hand rule to come up with number orders for faces on
# the box (with normals pointing out).
addFaces.append([0, 3, 2, 1])
addFaces.append([4, 5, 6, 7])
addFaces.append([0, 1, 5, 4])
addFaces.append([1, 2, 6, 5])
addFaces.append([2, 3, 7, 6])
addFaces.append([0, 4, 7, 3])
# Delete all geometry from the object.
bpy.ops.mesh.select_all(action='SELECT')
bpy.ops.mesh.delete(type='VERT')
# Must be in object mode for from_pydata to work
bpy.ops.object.mode_set(mode='OBJECT')
# Add the mesh data.
mesh.from_pydata(addVerts, [], addFaces)
# Update the mesh
mesh.update()
def applyScaleRotLoc(scene, obj):
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object
obj.select = True
scene.objects.active = obj
bpy.ops.object.transform_apply(location=True, rotation=True, scale=True)
def totallyDeleteObject(scene, obj):
scene.objects.unlink(obj)
bpy.data.objects.remove(obj)
def makeParent(parentobj, childobj, scene):
applyScaleRotLoc(scene, parentobj)
applyScaleRotLoc(scene, childobj)
childobj.parent = parentobj
def addNewObject(scene, name, copyobj):
# Create new mesh
mesh = bpy.data.meshes.new(name)
# Create a new object.
ob_new = bpy.data.objects.new(name, mesh)
tempme = copyobj.data
ob_new.data = tempme.copy()
ob_new.scale = copyobj.scale
ob_new.location = copyobj.location
# Link new object to the given scene and select it.
scene.objects.link(ob_new)
ob_new.select = True
return ob_new
def getpdensitytexture(object):
for mslot in object.material_slots:
mat = mslot.material
for tslot in mat.texture_slots:
if tslot != 'NoneType':
tex = tslot.texture
if tex.type == 'POINT_DENSITY':
if tex.point_density.point_source == 'PARTICLE_SYSTEM':
return tex
def removeParticleSystemFromObj(scene, object):
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object.
object.select = True
scene.objects.active = object
bpy.ops.object.particle_system_remove()
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
def convertParticlesToMesh(scene, particlesobj, destobj, replacemesh):
# Select the Destination object.
destobj.select = True
scene.objects.active = destobj
#Go to Edit Mode
bpy.ops.object.mode_set(mode='EDIT', toggle=False)
#Delete everything in mesh if replace true
if replacemesh:
bpy.ops.mesh.select_all(action='SELECT')
bpy.ops.mesh.delete(type='VERT')
meshPnts = destobj.data
listCloudParticles = particlesobj.particles
listMeshPnts = []
for pTicle in listCloudParticles:
listMeshPnts.append(pTicle.location)
# Must be in object mode for from_pydata to work.
bpy.ops.object.mode_set(mode='OBJECT')
# Add in the mesh data.
meshPnts.from_pydata(listMeshPnts, [], [])
# Update the mesh.
meshPnts.update()
def combineObjects(scene, combined, listobjs):
# scene is the current scene
# combined is the object we want to combine everything into
# listobjs is the list of objects to stick into combined
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the new object.
combined.select = True
scene.objects.active = combined
# Add data
if len(listobjs) > 0:
for i in listobjs:
# Add a modifier
bpy.ops.object.modifier_add(type='BOOLEAN')
union = combined.modifiers
union[0].name = "AddEmUp"
union[0].object = i
union[0].operation = 'UNION'
# Apply modifier
bpy.ops.object.modifier_apply(apply_as='DATA', modifier=union[0].name)
# Returns the action we want to take
def getActionToDo(obj):
if not obj or obj.type != 'MESH':
return 'NOT_OBJ_DO_NOTHING'
elif obj is None:
return 'NO_SELECTION_DO_NOTHING'
elif "CloudMember" in obj:
if obj["CloudMember"] != None:
if obj["CloudMember"] == "MainObj":
return 'DEGENERATE'
elif obj["CloudMember"] == "CreatedObj" and len(obj.particle_systems) > 0:
return 'CLOUD_CONVERT_TO_MESH'
else:
return 'CLOUD_DO_NOTHING'
elif obj.type == 'MESH':
return 'GENERATE'
else:
return 'DO_NOTHING'
class VIEW3D_PT_tools_cloud(Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'TOOLS'
bl_label = "Cloud Generator"
bl_context = "objectmode"
bl_options = {'DEFAULT_CLOSED'}
def draw(self, context):
active_obj = context.active_object
layout = self.layout
col = layout.column(align=True)
WhatToDo = getActionToDo(active_obj)
if WhatToDo == 'DEGENERATE':
col.operator("cloud.generate_cloud", text="DeGenerate")
elif WhatToDo == 'CLOUD_CONVERT_TO_MESH':
col.operator("cloud.generate_cloud", text="Convert to Mesh")
elif WhatToDo == 'NO_SELECTION_DO_NOTHING':
col.label(text="Select one or more")
col.label(text="objects to generate")
col.label(text="a cloud")
elif WhatToDo == 'CLOUD_DO_NOTHING':
col.label(text="Must select")
col.label(text="bound box")
elif WhatToDo == 'GENERATE':
col.operator("cloud.generate_cloud", text="Generate Cloud")
col.prop(context.scene, "cloud_type")
col.prop(context.scene, "cloudparticles")
col.prop(context.scene, "cloudsmoothing")
else:
col.label(text="Select one or more")
col.label(text="objects to generate")
col.label(text="a cloud")
class GenerateCloud(Operator):
"""Create a Cloud,Undo Cloud, or convert to Mesh Cloud depending on selection"""
bl_idname = "cloud.generate_cloud"
bl_label = "Generate Cloud"
bl_register = True
bl_undo = True
@classmethod
def poll(cls, context):
if not context.active_object:
return False
else:
return (context.active_object.type == 'MESH')
def execute(self, context):
# Make variable that is the current .blend file main data blocks
blend_data = context.blend_data
# Make variable that is the active object selected by user
active_object = context.active_object
# Make variable scene that is current scene
scene = context.scene
# Parameters the user may want to change:
# Number of points this number is multiplied by the volume to get
# the number of points the scripts will put in the volume.
numOfPoints = 1.0
maxNumOfPoints = 100000
maxPointDensityRadius = 1.5
scattering = 2.5
pointDensityRadiusFactor = 1.0
densityScale = 1.5
# What should we do?
WhatToDo = getActionToDo(active_object)
if WhatToDo == 'DEGENERATE':
# Degenerate Cloud
mainObj = active_object
cloudMembers = active_object.children
createdObjects = []
definitionObjects = []
for member in cloudMembers:
applyScaleRotLoc(scene, member)
if member["CloudMember"] == "CreatedObj":
createdObjects.append(member)
else:
definitionObjects.append(member)
for defObj in definitionObjects:
# Delete cloudmember data from objects
if "CloudMember" in defObj:
del(defObj["CloudMember"])
for createdObj in createdObjects:
totallyDeleteObject(scene, createdObj)
# Delete the blend_data object
totallyDeleteObject(scene, mainObj)
# Select all of the left over boxes so people can immediately
# press generate again if they want.
for eachMember in definitionObjects:
eachMember.draw_type = 'SOLID'
eachMember.select = True
eachMember.hide_render = False
elif WhatToDo == 'CLOUD_CONVERT_TO_MESH':
cloudParticles = active_object.particle_systems.active
bounds = active_object.parent
###############Create CloudPnts for putting points in#########
# Create a new object cloudPnts
cloudPnts = addNewObject(scene, "CloudPoints", bounds)
cloudPnts["CloudMember"] = "CreatedObj"
cloudPnts.draw_type = 'WIRE'
cloudPnts.hide_render = True
makeParent(bounds, cloudPnts, scene)
convertParticlesToMesh(scene, cloudParticles, cloudPnts, True)
removeParticleSystemFromObj(scene, active_object)
pDensity = getpdensitytexture(bounds)
pDensity.point_density.point_source = 'OBJECT'
pDensity.point_density.object = cloudPnts
#Let's resize the bound box to be more accurate.
how_much_bigger = pDensity.point_density.radius
makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloudPnts)
else:
# Generate Cloud
###############Create Combined Object bounds##################
# Make a list of all Selected objects.
selectedObjects = bpy.context.selected_objects
if not selectedObjects:
selectedObjects = [bpy.context.active_object]
# Create a new object bounds
bounds = addNewObject(scene,
"CloudBounds",
selectedObjects[0])
bounds.draw_type = 'BOUNDS'
bounds.hide_render = False
# Just add a Definition Property designating this
# as the blend_data object.
bounds["CloudMember"] = "MainObj"
# Since we used iteration 0 to copy with object we
# delete it off the list.
firstObject = selectedObjects[0]
del selectedObjects[0]
# Apply location Rotation and Scale to all objects involved.
applyScaleRotLoc(scene, bounds)
for each in selectedObjects:
applyScaleRotLoc(scene, each)
# Let's combine all of them together.
combineObjects(scene, bounds, selectedObjects)
# Let's add some property info to the objects.
for selObj in selectedObjects:
selObj["CloudMember"] = "DefinitioinObj"
selObj.name = "DefinitioinObj"
selObj.draw_type = 'WIRE'
selObj.hide_render = True
makeParent(bounds, selObj, scene)
# Do the same to the 1. object since it is no longer in list.
firstObject["CloudMember"] = "DefinitioinObj"
firstObject.name = "DefinitioinObj"
firstObject.draw_type = 'WIRE'
firstObject.hide_render = True
makeParent(bounds, firstObject, scene)
###############Create Cloud for putting Cloud Mesh############
# Create a new object cloud.
cloud = addNewObject(scene, "CloudMesh", bounds)
cloud["CloudMember"] = "CreatedObj"
cloud.draw_type = 'WIRE'
cloud.hide_render = True
makeParent(bounds, cloud, scene)
bpy.ops.object.editmode_toggle()
bpy.ops.mesh.select_all(action='SELECT')
#Don't subdivide object or smooth if smoothing box not checked.
if scene.cloudsmoothing:
bpy.ops.mesh.subdivide(number_cuts=2, fractal=0, smoothness=1)
# bpy.ops.object.transform_apply(location=True)
bpy.ops.mesh.vertices_smooth(repeat=20)
bpy.ops.mesh.tris_convert_to_quads()
bpy.ops.mesh.faces_shade_smooth()
bpy.ops.object.editmode_toggle()
###############Create Particles in cloud obj##################
# Set time to 0.
scene.frame_current = 0
# Add a new particle system.
bpy.ops.object.particle_system_add()
#Particle settings setting it up!
cloudParticles = cloud.particle_systems.active
cloudParticles.name = "CloudParticles"
cloudParticles.settings.frame_start = 0
cloudParticles.settings.frame_end = 0
cloudParticles.settings.emit_from = 'VOLUME'
cloudParticles.settings.lifetime = scene.frame_end
cloudParticles.settings.draw_method = 'DOT'
cloudParticles.settings.render_type = 'NONE'
cloudParticles.settings.distribution = 'RAND'
cloudParticles.settings.physics_type = 'NEWTON'
cloudParticles.settings.normal_factor = 0
#Gravity does not effect the particle system
eWeights = cloudParticles.settings.effector_weights
eWeights.gravity = 0
####################Create Volume Material####################
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object.
bounds.select = True
scene.objects.active = bounds
# Turn bounds object into a box. Use itself as a reference.
makeObjectIntoBoundBox(scene, bounds, 1.0, bounds)
# Delete all material slots in bounds object.
for i in range(len(bounds.material_slots)):
bounds.active_material_index = i - 1
bpy.ops.object.material_slot_remove()
# Add a new material.
cloudMaterial = blend_data.materials.new("CloudMaterial")
bpy.ops.object.material_slot_add()
bounds.material_slots[0].material = cloudMaterial
# Set Up the Cloud Material
cloudMaterial.name = "CloudMaterial"
cloudMaterial.type = 'VOLUME'
mVolume = cloudMaterial.volume
mVolume.scattering = scattering
mVolume.density = 0
mVolume.density_scale = densityScale
mVolume.transmission_color = 3.0, 3.0, 3.0
mVolume.step_size = 0.1
mVolume.use_light_cache = True
mVolume.cache_resolution = 45
# Add a texture
# vMaterialTextureSlots = cloudMaterial.texture_slots # UNUSED
cloudtex = blend_data.textures.new("CloudTex", type='CLOUDS')
cloudtex.noise_type = 'HARD_NOISE'
cloudtex.noise_scale = 2
mtex = cloudMaterial.texture_slots.add()
mtex.texture = cloudtex
mtex.texture_coords = 'ORCO'
mtex.use_map_color_diffuse = True
# Set time
scene.frame_current = 1
# Add a Point Density texture
pDensity = blend_data.textures.new("CloudPointDensity", 'POINT_DENSITY')
mtex = cloudMaterial.texture_slots.add()
mtex.texture = pDensity
mtex.texture_coords = 'GLOBAL'
mtex.use_map_density = True
mtex.use_rgb_to_intensity = True
mtex.texture_coords = 'GLOBAL'
pDensity.point_density.vertex_cache_space = 'WORLD_SPACE'
pDensity.point_density.use_turbulence = True
pDensity.point_density.noise_basis = 'VORONOI_F2'
pDensity.point_density.turbulence_depth = 3
pDensity.use_color_ramp = True
pRamp = pDensity.color_ramp
#pRamp.use_interpolation = 'LINEAR'
pRampElements = pRamp.elements
#pRampElements[1].position = .9
#pRampElements[1].color = 0.18, 0.18, 0.18, 0.8
bpy.ops.texture.slot_move(type='UP')
# Estimate the number of particles for the size of bounds.
volumeBoundBox = (bounds.dimensions[0] * bounds.dimensions[1] * bounds.dimensions[2])
numParticles = int((2.4462 * volumeBoundBox + 430.4) * numOfPoints)
if numParticles > maxNumOfPoints:
numParticles = maxNumOfPoints
if numParticles < 10000:
numParticles = int(numParticles + 15 * volumeBoundBox)
print(numParticles)
# Set the number of particles according to the volume
# of bounds.
cloudParticles.settings.count = numParticles
pDensity.point_density.radius = (.00013764 * volumeBoundBox + .3989) * pointDensityRadiusFactor
if pDensity.point_density.radius > maxPointDensityRadius:
pDensity.point_density.radius = maxPointDensityRadius
# Set time to 1.
scene.frame_current = 1
if not scene.cloudparticles:
###############Create CloudPnts for putting points in#########
# Create a new object cloudPnts
cloudPnts = addNewObject(scene, "CloudPoints", bounds)
cloudPnts["CloudMember"] = "CreatedObj"
cloudPnts.draw_type = 'WIRE'
cloudPnts.hide_render = True
makeParent(bounds, cloudPnts, scene)
convertParticlesToMesh(scene, cloudParticles, cloudPnts, True)
# Add a modifier.
bpy.ops.object.modifier_add(type='DISPLACE')
cldPntsModifiers = cloudPnts.modifiers
cldPntsModifiers[0].name = "CloudPnts"
cldPntsModifiers[0].texture = cloudtex
cldPntsModifiers[0].texture_coords = 'OBJECT'
cldPntsModifiers[0].texture_coords_object = cloud
cldPntsModifiers[0].strength = -1.4
# Apply modifier
bpy.ops.object.modifier_apply(apply_as='DATA', modifier=cldPntsModifiers[0].name)
pDensity.point_density.point_source = 'OBJECT'
pDensity.point_density.object = cloudPnts
removeParticleSystemFromObj(scene, cloud)
else:
pDensity.point_density.point_source = 'PARTICLE_SYSTEM'
pDensity.point_density.object = cloud
pDensity.point_density.particle_system = cloudParticles
if scene.cloud_type == '1': # Cumulous
print("Cumulous")
mVolume.density_scale = 2.22
pDensity.point_density.turbulence_depth = 10
pDensity.point_density.turbulence_strength = 6.3
pDensity.point_density.turbulence_scale = 2.9
pRampElements[1].position = .606
pDensity.point_density.radius = pDensity.point_density.radius + 0.1
elif scene.cloud_type == '2': # Cirrus
print("Cirrus")
pDensity.point_density.turbulence_strength = 22
mVolume.transmission_color = 3.5, 3.5, 3.5
mVolume.scattering = 0.13
elif scene.cloud_type == '3': # Explosion
mVolume.emission = 1.42
mtex.use_rgb_to_intensity = False
pRampElements[0].position = 0.825
pRampElements[0].color = 0.119, 0.119, 0.119, 1
pRampElements[1].position = .049
pRampElements[1].color = 1.0, 1.0, 1.0, 0
pDensity.point_density.turbulence_strength = 1.5
pRampElement1 = pRampElements.new(.452)
pRampElement1.color = 0.814, 0.112, 0, 1
pRampElement2 = pRampElements.new(.234)
pRampElement2.color = 0.814, 0.310, 0.002, 1
pRampElement3 = pRampElements.new(0.669)
pRampElement3.color = 0.0, 0.0, 0.040, 1
# Select the object.
bounds.select = True
scene.objects.active = bounds
#Let's resize the bound box to be more accurate.
how_much_bigger = pDensity.point_density.radius + 0.1
#If it's a particle cloud use cloud mesh if otherwise use point mesh
if not scene.cloudparticles:
makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloudPnts)
else:
makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloud)
return {'FINISHED'}
def register():
bpy.utils.register_module(__name__)
bpy.types.Scene.cloudparticles = BoolProperty(
name="Particles",
description="Generate Cloud as Particle System",
default=False)
bpy.types.Scene.cloudsmoothing = BoolProperty(
name="Smoothing",
description="Smooth Resultant Geometry From Gen Cloud Operation",
default=True)
bpy.types.Scene.cloud_type = EnumProperty(
name="Type",
description="Select the type of cloud to create with material settings",
items=[("0", "Stratus", "Generate Stratus_foggy Cloud"),
("1", "Cumulous", "Generate Cumulous_puffy Cloud"),
("2", "Cirrus", "Generate Cirrus_wispy Cloud"),
("3", "Explosion", "Generate Explosion"),
],
default='0')
def unregister():
bpy.utils.unregister_module(__name__)
del bpy.types.Scene.cloudparticles
del bpy.types.Scene.cloud_type
if __name__ == "__main__":
register()