-
Campbell Barton authoredCampbell Barton authored
export_x3d.py 51.38 KiB
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
# Contributors: bart:neeneenee*de, http://www.neeneenee.de/vrml, Campbell Barton
"""
This script exports to X3D format.
Usage:
Run this script from "File->Export" menu. A pop-up will ask whether you
want to export only selected or all relevant objects.
Known issues:
Doesn't handle multiple materials (don't use material indices);<br>
Doesn't handle multiple UV textures on a single mesh (create a mesh for each texture);<br>
Can't get the texture array associated with material * not the UV ones;
"""
import math
import os
import bpy
import mathutils
from bpy_extras.io_utils import create_derived_objects, free_derived_objects
x3d_names_reserved = {'Anchor', 'Appearance', 'Arc2D', 'ArcClose2D', 'AudioClip', 'Background', 'Billboard',
'BooleanFilter', 'BooleanSequencer', 'BooleanToggle', 'BooleanTrigger', 'Box', 'Circle2D',
'Collision', 'Color', 'ColorInterpolator', 'ColorRGBA', 'component', 'Cone', 'connect',
'Contour2D', 'ContourPolyline2D', 'Coordinate', 'CoordinateDouble', 'CoordinateInterpolator',
'CoordinateInterpolator2D', 'Cylinder', 'CylinderSensor', 'DirectionalLight', 'Disk2D',
'ElevationGrid', 'EspduTransform', 'EXPORT', 'ExternProtoDeclare', 'Extrusion', 'field',
'fieldValue', 'FillProperties', 'Fog', 'FontStyle', 'GeoCoordinate', 'GeoElevationGrid',
'GeoLocationLocation', 'GeoLOD', 'GeoMetadata', 'GeoOrigin', 'GeoPositionInterpolator',
'GeoTouchSensor', 'GeoViewpoint', 'Group', 'HAnimDisplacer', 'HAnimHumanoid', 'HAnimJoint',
'HAnimSegment', 'HAnimSite', 'head', 'ImageTexture', 'IMPORT', 'IndexedFaceSet',
'IndexedLineSet', 'IndexedTriangleFanSet', 'IndexedTriangleSet', 'IndexedTriangleStripSet',
'Inline', 'IntegerSequencer', 'IntegerTrigger', 'IS', 'KeySensor', 'LineProperties', 'LineSet',
'LoadSensor', 'LOD', 'Material', 'meta', 'MetadataDouble', 'MetadataFloat', 'MetadataInteger',
'MetadataSet', 'MetadataString', 'MovieTexture', 'MultiTexture', 'MultiTextureCoordinate',
'MultiTextureTransform', 'NavigationInfo', 'Normal', 'NormalInterpolator', 'NurbsCurve',
'NurbsCurve2D', 'NurbsOrientationInterpolator', 'NurbsPatchSurface',
'NurbsPositionInterpolator', 'NurbsSet', 'NurbsSurfaceInterpolator', 'NurbsSweptSurface',
'NurbsSwungSurface', 'NurbsTextureCoordinate', 'NurbsTrimmedSurface', 'OrientationInterpolator',
'PixelTexture', 'PlaneSensor', 'PointLight', 'PointSet', 'Polyline2D', 'Polypoint2D',
'PositionInterpolator', 'PositionInterpolator2D', 'ProtoBody', 'ProtoDeclare', 'ProtoInstance',
'ProtoInterface', 'ProximitySensor', 'ReceiverPdu', 'Rectangle2D', 'ROUTE', 'ScalarInterpolator',
'Scene', 'Script', 'Shape', 'SignalPdu', 'Sound', 'Sphere', 'SphereSensor', 'SpotLight', 'StaticGroup',
'StringSensor', 'Switch', 'Text', 'TextureBackground', 'TextureCoordinate', 'TextureCoordinateGenerator',
'TextureTransform', 'TimeSensor', 'TimeTrigger', 'TouchSensor', 'Transform', 'TransmitterPdu',
'TriangleFanSet', 'TriangleSet', 'TriangleSet2D', 'TriangleStripSet', 'Viewpoint', 'VisibilitySensor',
'WorldInfo', 'X3D', 'XvlShell', 'VertexShader', 'FragmentShader', 'MultiShaderAppearance', 'ShaderAppearance'}
def clamp_color(col):
return tuple([max(min(c, 1.0), 0.0) for c in col])
def matrix_direction_neg_z(mtx):
return (mathutils.Vector((0.0, 0.0, -1.0)) * mtx.to_3x3()).normalized()[:]
def clean_str(name, prefix='rsvd_'):
"""cleanStr(name,prefix) - try to create a valid VRML DEF name from object name"""
newName = name
if newName in x3d_names_reserved:
newName = '%s%s' % (prefix, newName)
if newName[0].isdigit():
newName = '%s%s' % ('_', newName)
for bad in [' ', '"', '#', "'", ', ', '.', '[', '\\', ']', '{', '}']:
newName = newName.replace(bad, '_')
return newName
##########################################################
# Functions for writing output file
##########################################################
def export(file,
global_matrix,
scene,
use_apply_modifiers=False,
use_selection=True,
use_triangulate=False,
use_normals=False,
use_h3d=False,
):
# -------------------------------------------------------------------------
# global setup
# -------------------------------------------------------------------------
fw = file.write
dirname = os.path.dirname(file.name)
gpu_shader_cache = {}
if use_h3d:
import gpu
gpu_shader_dummy_mat = bpy.data.materials.new('X3D_DYMMY_MAT')
gpu_shader_cache[None] = gpu.export_shader(scene, gpu_shader_dummy_mat)
##########################################################
# Writing nodes routines
##########################################################
def writeHeader(ident):
filepath = fw.__self__.name
bfile = repr(os.path.basename(filepath).replace('<', '<').replace('>', '>'))[1:-1] # use outfile name
fw('%s<?xml version="1.0" encoding="UTF-8"?>\n' % ident)
if use_h3d:
fw('%s<X3D profile="H3DAPI" version="1.4">\n' % ident)
else:
fw('%s<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN" "http://www.web3d.org/specifications/x3d-3.0.dtd">\n' % ident)
fw('%s<X3D version="3.0" profile="Immersive" xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance" xsd:noNamespaceSchemaLocation="http://www.web3d.org/specifications/x3d-3.0.xsd">\n' % ident)
ident += '\t'
fw('%s<head>\n' % ident)
ident += '\t'
fw('%s<meta name="filename" content="%s" />\n' % (ident, bfile))
fw('%s<meta name="generator" content="Blender %s" />\n' % (ident, bpy.app.version_string))
# this info was never updated, so blender version should be enough
# fw('%s<meta name="translator" content="X3D exporter v1.55 (2006/01/17)" />\n' % ident)
ident = ident[:-1]
fw('%s</head>\n' % ident)
fw('%s<Scene>\n' % ident)
ident += '\t'
return ident
def writeFooter(ident):
ident = ident[:-1]
fw('%s</Scene>\n' % ident)
ident = ident[:-1]
fw('%s</X3D>' % ident)
return ident
def writeViewpoint(ident, obj, mat, scene):
loc, quat, scale = mat.decompose()
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<Viewpoint ' % ident)))
fw('DEF="%s"\n' % clean_str(obj.name))
fw(ident_step + 'description="%s"\n' % obj.name)
fw(ident_step + 'centerOfRotation="0 0 0"\n')
fw(ident_step + 'position="%3.2f %3.2f %3.2f"\n' % loc[:])
fw(ident_step + 'orientation="%3.2f %3.2f %3.2f %3.2f"\n' % (quat.axis[:] + (quat.angle, )))
fw(ident_step + 'fieldOfView="%.3g"\n' % obj.data.angle)
fw(ident_step + '/>\n')
def writeFog(ident, world):
if world:
mtype = world.mist_settings.falloff
mparam = world.mist_settings
else:
return
if mparam.use_mist:
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<Fog ' % ident)))
fw('fogType="%s"\n' % ('LINEAR' if (mtype == 'LINEAR') else 'EXPONENTIAL'))
fw(ident_step + 'color="%.3g %.3g %.3g"\n' % clamp_color(world.horizon_color))
fw(ident_step + 'visibilityRange="%.3g"\n' % mparam.depth)
fw(ident_step + '/>\n')
else:
return
def writeNavigationInfo(ident, scene):
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<NavigationInfo ' % ident)))
fw('headlight="false"\n')
fw(ident_step + 'visibilityLimit="0.0"\n')
fw(ident_step + 'type=\'"EXAMINE", "ANY"\'\n')
fw(ident_step + 'avatarSize="0.25, 1.75, 0.75"\n')
fw(ident_step + '/>\n')
def writeSpotLight(ident, obj, mtx, lamp, world):
safeName = clean_str(obj.name)
if world:
ambi = world.ambient_color
amb_intensity = ((ambi[0] + ambi[1] + ambi[2]) / 3.0) / 2.5
del ambi
else:
amb_intensity = 0.0
# compute cutoff and beamwidth
intensity = min(lamp.energy / 1.75, 1.0)
beamWidth = lamp.spot_size * 0.37
# beamWidth=((lamp.spotSize*math.pi)/180.0)*.37
cutOffAngle = beamWidth * 1.3
orientation = matrix_direction_neg_z(mtx)
location = mtx.to_translation()[:]
radius = lamp.distance * math.cos(beamWidth)
# radius = lamp.dist*math.cos(beamWidth)
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<SpotLight ' % ident)))
fw('DEF="%s"\n' % safeName)
fw(ident_step + 'radius="%.4g"\n' % radius)
fw(ident_step + 'ambientIntensity="%.4g"\n' % amb_intensity)
fw(ident_step + 'intensity="%.4g"\n' % intensity)
fw(ident_step + 'color="%.4g %.4g %.4g"\n' % clamp_color(lamp.color))
fw(ident_step + 'beamWidth="%.4g"\n' % beamWidth)
fw(ident_step + 'cutOffAngle="%.4g"\n' % cutOffAngle)
fw(ident_step + 'direction="%.4g %.4g %.4g"\n' % orientation)
fw(ident_step + 'location="%.4g %.4g %.4g"\n' % location)
fw(ident_step + '/>\n')
def writeDirectionalLight(ident, obj, mtx, lamp, world):
safeName = clean_str(obj.name)
if world:
ambi = world.ambient_color
# ambi = world.amb
amb_intensity = ((float(ambi[0] + ambi[1] + ambi[2])) / 3.0) / 2.5
else:
ambi = 0
amb_intensity = 0.0
intensity = min(lamp.energy / 1.75, 1.0)
orientation = matrix_direction_neg_z(mtx)
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<DirectionalLight ' % ident)))
fw('DEF="%s"\n' % safeName)
fw(ident_step + 'ambientIntensity="%.4g"\n' % amb_intensity)
fw(ident_step + 'color="%.4g %.4g %.4g"\n' % clamp_color(lamp.color))
fw(ident_step + 'intensity="%.4g"\n' % intensity)
fw(ident_step + 'direction="%.4g %.4g %.4g"\n' % orientation)
fw(ident_step + '/>\n')
def writePointLight(ident, obj, mtx, lamp, world):
safeName = clean_str(obj.name)
if world:
ambi = world.ambient_color
# ambi = world.amb
amb_intensity = ((float(ambi[0] + ambi[1] + ambi[2])) / 3.0) / 2.5
else:
ambi = 0.0
amb_intensity = 0.0
intensity = min(lamp.energy / 1.75, 1.0)
location = mtx.to_translation()[:]
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<PointLight ' % ident)))
fw('DEF="%s"\n' % safeName)
fw(ident_step + 'ambientIntensity="%.4g"\n' % amb_intensity)
fw(ident_step + 'color="%.4g %.4g %.4g"\n' % clamp_color(lamp.color))
fw(ident_step + 'intensity="%.4g"\n' % intensity)
fw(ident_step + 'radius="%.4g" \n' % lamp.distance)
fw(ident_step + 'location="%.4g %.4g %.4g"\n' % location)
fw(ident_step + '/>\n')
def secureName(name):
name = name + str(secureName.nodeID)
secureName.nodeID += 1
if len(name) <= 3:
newname = '_' + str(secureName.nodeID)
return "%s" % (newname)
else:
for bad in ('"', '#', "'", ', ', '.', '[', '\\', ']', '{', '}'):
name = name.replace(bad, '_')
if name in x3d_names_reserved:
newname = name[0:3] + '_' + str(secureName.nodeID)
return "%s" % (newname)
elif name[0].isdigit():
newname = '_' + name + str(secureName.nodeID)
return "%s" % (newname)
else:
newname = name
return "%s" % (newname)
secureName.nodeID = 0
def writeIndexedFaceSet(ident, obj, mesh, mtx, world):
shape_name_x3d = clean_str(obj.name)
mesh_name_x3d = clean_str(mesh.name)
if not mesh.faces:
return
texface_use_halo = 0
texface_use_billboard = 0
texface_use_collision = 0
use_halonode = False
use_billnode = False
use_collnode = False
if mesh.uv_textures.active: # if mesh.faceUV:
for face in mesh.uv_textures.active.data: # for face in mesh.faces:
texface_use_halo |= face.use_halo
texface_use_billboard |= face.use_billboard
texface_use_collision |= face.use_collision
# texface_use_object_color |= face.use_object_color
if texface_use_halo:
fw('%s<Billboard axisOfRotation="0 0 0">\n' % ident)
use_halonode = True
ident += '\t'
elif texface_use_billboard:
fw('%s<Billboard axisOfRotation="0 1 0">\n' % ident)
use_billnode = True
ident += '\t'
elif texface_use_collision:
fw('%s<Collision enabled="false">\n' % ident)
use_collnode = True
ident += '\t'
del texface_use_halo
del texface_use_billboard
del texface_use_collision
# del texface_use_object_color
loc, quat, sca = mtx.decompose()
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<Transform ' % ident)))
fw('DEF="%s"\n' % shape_name_x3d)
fw(ident_step + 'translation="%.6g %.6g %.6g"\n' % loc[:])
fw(ident_step + 'scale="%.6g %.6g %.6g"\n' % sca[:])
fw(ident_step + 'rotation="%.6g %.6g %.6g %.6g"\n' % (quat.axis[:] + (quat.angle, )))
fw(ident_step + '>\n')
ident += '\t'
if mesh.tag:
fw('%s<Group USE="G_%s" />\n' % (ident, mesh_name_x3d))
else:
mesh.tag = True
fw('%s<Group DEF="G_%s">\n' % (ident, mesh_name_x3d))
ident += '\t'
is_uv = bool(mesh.uv_textures.active)
# is_col, defined for each material
is_coords_written = False
mesh_materials = mesh.materials[:]
if not mesh_materials:
mesh_materials = [None]
mesh_material_tex = [None] * len(mesh_materials)
mesh_material_mtex = [None] * len(mesh_materials)
mesh_material_images = [None] * len(mesh_materials)
for i, material in enumerate(mesh_materials):
if material:
for mtex in material.texture_slots:
if mtex:
tex = mtex.texture
if tex and tex.type == 'IMAGE':
image = tex.image
if image:
mesh_material_tex[i] = tex
mesh_material_mtex[i] = mtex
mesh_material_images[i] = image
break
mesh_materials_use_face_texture = [getattr(material, 'use_face_texture', True) for material in mesh_materials]
# fast access!
mesh_vertices = mesh.vertices[:]
mesh_faces = mesh.faces[:]
mesh_faces_materials = [f.material_index for f in mesh_faces]
mesh_faces_vertices = [f.vertices[:] for f in mesh_faces]
if is_uv and True in mesh_materials_use_face_texture:
mesh_faces_image = [(fuv.image if (mesh_materials_use_face_texture[mesh_faces_materials[i]] and fuv.use_image) else mesh_material_images[mesh_faces_materials[i]]) for i, fuv in enumerate(mesh.uv_textures.active.data)]
mesh_faces_image_unique = set(mesh_faces_image)
elif len(set(mesh_material_images) | {None}) > 1: # make sure there is at least one image
mesh_faces_image = [mesh_material_images[material_index] for material_index in mesh_faces_materials]
mesh_faces_image_unique = set(mesh_faces_image)
else:
mesh_faces_image = [None] * len(mesh_faces)
mesh_faces_image_unique = {None}
# group faces
face_groups = {}
for material_index in range(len(mesh_materials)):
for image in mesh_faces_image_unique:
face_groups[material_index, image] = []
del mesh_faces_image_unique
for i, (material_index, image) in enumerate(zip(mesh_faces_materials, mesh_faces_image)):
face_groups[material_index, image].append(i)
# same as face_groups.items() but sorted so we can get predictable output.
face_groups_items = list(face_groups.items())
face_groups_items.sort(key=lambda m: (m[0][0], getattr(m[0][1], 'name', '')))
for (material_index, image), face_group in face_groups_items: # face_groups.items()
if face_group:
material = mesh_materials[material_index]
fw('%s<Shape>\n' % ident)
ident += '\t'
is_smooth = False
is_col = (mesh.vertex_colors.active and (material is None or material.use_vertex_color_paint))
# kludge but as good as it gets!
for i in face_group:
if mesh_faces[i].use_smooth:
is_smooth = True
break
if use_h3d:
gpu_shader = gpu_shader_cache.get(material) # material can be 'None', uses dummy cache
if gpu_shader is None:
gpu_shader = gpu_shader_cache[material] = gpu.export_shader(scene, material)
if 1: # XXX DEBUG
gpu_shader_tmp = gpu.export_shader(scene, material)
import pprint
print('\nWRITING MATERIAL:', material.name)
del gpu_shader_tmp['fragment']
del gpu_shader_tmp['vertex']
pprint.pprint(gpu_shader_tmp, width=120)
#pprint.pprint(val['vertex'])
del gpu_shader_tmp
fw('%s<Appearance>\n' % ident)
ident += '\t'
if image and not use_h3d:
writeImageTexture(ident, image)
if mesh_materials_use_face_texture[material_index]:
if image.use_tiles:
fw('%s<TextureTransform scale="%s %s" />\n' % (ident, image.tiles_x, image.tiles_y))
else:
# transform by mtex
loc = mesh_material_mtex[material_index].offset[:2]
# mtex_scale * tex_repeat
sca_x, sca_y = mesh_material_mtex[material_index].scale[:2]
sca_x *= mesh_material_tex[material_index].repeat_x
sca_y *= mesh_material_tex[material_index].repeat_y
# flip x/y is a sampling feature, convert to transform
if mesh_material_tex[material_index].use_flip_axis:
rot = math.pi / -2.0
sca_x, sca_y = sca_y, -sca_x
else:
rot = 0.0
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<TextureTransform ' % ident)))
# fw('center="%.6g %.6g" ' % (0.0, 0.0))
fw(ident_step + 'translation="%.6g %.6g"\n' % loc)
fw(ident_step + 'scale="%.6g %.6g"\n' % (sca_x, sca_y))
fw(ident_step + 'rotation="%.6g"\n' % rot)
fw(ident_step + '/>\n')
if use_h3d:
mat_tmp = material if material else gpu_shader_dummy_mat
writeMaterialH3D(ident, mat_tmp, clean_str(mat_tmp.name, ''), world,
obj, gpu_shader)
del mat_tmp
else:
writeMaterial(ident, material, clean_str(material.name, ''), world)
ident = ident[:-1]
fw('%s</Appearance>\n' % ident)
mesh_faces_col = mesh.vertex_colors.active.data if is_col else None
mesh_faces_uv = mesh.uv_textures.active.data if is_uv else None
#-- IndexedFaceSet or IndexedLineSet
if use_triangulate:
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<IndexedTriangleSet ' % ident)))
# --- Write IndexedTriangleSet Attributes (same as IndexedFaceSet)
fw('solid="%s"\n' % ('true' if mesh.show_double_sided else 'false'))
if is_smooth:
fw(ident_step + 'creaseAngle="%.4g"\n' % mesh.auto_smooth_angle)
if use_normals:
# currently not optional, could be made so:
fw(ident_step + 'normalPerVertex="true"\n')
slot_uv = None
slot_col = None
if is_uv and is_col:
slot_uv = 0
slot_col = 1
def vertex_key(fidx, f_cnr_idx):
return (
mesh_faces_uv[fidx].uv[f_cnr_idx][:],
getattr(mesh_faces_col[fidx], "color%d" % (f_cnr_idx + 1))[:],
)
elif is_uv:
slot_uv = 0
def vertex_key(fidx, f_cnr_idx):
return (
mesh_faces_uv[fidx].uv[f_cnr_idx][:],
)
elif is_col:
slot_col = 0
def vertex_key(fidx, f_cnr_idx):
return (
getattr(mesh_faces_col[fidx], "color%d" % (f_cnr_idx + 1))[:],
)
else:
# ack, not especially efficient in this case
def vertex_key(fidx, f_cnr_idx):
return None
# build a mesh mapping dict
vertex_hash = [{} for i in range(len(mesh.vertices))]
# worst case every face is a quad
face_tri_list = [[None, None, None] for i in range(len(mesh.faces) * 2)]
vert_tri_list = []
totvert = 0
totface = 0
temp_face = [None] * 4
for i in face_group:
fv = mesh_faces_vertices[i]
for j, v_idx in enumerate(fv):
key = vertex_key(i, j)
vh = vertex_hash[v_idx]
x3d_v = vh.get(key)
if x3d_v is None:
x3d_v = key, v_idx, totvert
vh[key] = x3d_v
# key / original_vertex / new_vertex
vert_tri_list.append(x3d_v)
totvert += 1
temp_face[j] = x3d_v
if len(fv) == 4:
f_iter = ((0, 1, 2), (0, 2, 3))
else:
f_iter = ((0, 1, 2), )
for f_it in f_iter:
# loop over a quad as 2 tris
f_tri = face_tri_list[totface]
for ji, j in enumerate(f_it):
f_tri[ji] = temp_face[j]
# quads run this twice
totface += 1
# clear unused faces
face_tri_list[totface:] = []
fw(ident_step + 'index="')
for x3d_f in face_tri_list:
fw('%i %i %i ' % (x3d_f[0][2], x3d_f[1][2], x3d_f[2][2]))
fw('"\n')
# close IndexedTriangleSet
fw(ident_step + '>\n')
ident += '\t'
fw('%s<Coordinate ' % ident)
fw('point="')
for x3d_v in vert_tri_list:
fw('%.6g %.6g %.6g ' % mesh_vertices[x3d_v[1]].co[:])
fw('" />\n')
if use_normals:
fw('%s<Normal ' % ident)
fw('vector="')
for x3d_v in vert_tri_list:
fw('%.6g %.6g %.6g ' % mesh_vertices[x3d_v[1]].normal[:])
fw('" />\n')
if is_uv:
fw('%s<TextureCoordinate point="' % ident)
for x3d_v in vert_tri_list:
fw('%.4g %.4g ' % x3d_v[0][slot_uv])
fw('" />\n')
if is_col:
fw('%s<Color color="' % ident)
for x3d_v in vert_tri_list:
fw('%.3g %.3g %.3g ' % x3d_v[0][slot_col])
fw('" />\n')
if use_h3d:
# write attributes
for gpu_attr in gpu_shader['attributes']:
# UVs
if gpu_attr['type'] == gpu.CD_MTFACE:
if gpu_attr['datatype'] == gpu.GPU_DATA_2F:
fw('%s<FloatVertexAttribute ' % ident)
fw('name="%s" ' % gpu_attr['varname'])
fw('numComponents="2" ')
fw('value="')
for x3d_v in vert_tri_list:
fw('%.4g %.4g ' % x3d_v[0][slot_uv])
fw('" />\n')
else:
assert(0)
elif gpu_attr['type'] == gpu.CD_MCOL:
if gpu_attr['datatype'] == gpu.GPU_DATA_4UB:
pass # XXX, H3D can't do
else:
assert(0)
ident = ident[:-1]
fw('%s</IndexedTriangleSet>\n' % ident)
else:
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<IndexedFaceSet ' % ident)))
# --- Write IndexedFaceSet Attributes (same as IndexedTriangleSet)
fw('solid="%s"\n' % ('true' if mesh.show_double_sided else 'false'))
if is_smooth:
fw(ident_step + 'creaseAngle="%.4g"\n' % mesh.auto_smooth_angle)
if use_normals:
# currently not optional, could be made so:
fw(ident_step + 'normalPerVertex="true"\n')
# IndexedTriangleSet assumes true
if is_col:
fw(ident_step + 'colorPerVertex="false"\n')
# for IndexedTriangleSet we use a uv per vertex so this isnt needed.
if is_uv:
fw(ident_step + 'texCoordIndex="')
j = 0
for i in face_group:
if len(mesh_faces_vertices[i]) == 4:
fw('%d %d %d %d -1 ' % (j, j + 1, j + 2, j + 3))
j += 4
else:
fw('%d %d %d -1 ' % (j, j + 1, j + 2))
j += 3
fw('"\n')
# --- end texCoordIndex
if True:
fw(ident_step + 'coordIndex="')
for i in face_group:
fv = mesh_faces_vertices[i]
if len(fv) == 3:
fw('%i %i %i -1 ' % fv)
else:
fw('%i %i %i %i -1 ' % fv)
fw('"\n')
# --- end coordIndex
# close IndexedFaceSet
fw(ident_step + '>\n')
ident += '\t'
# --- Write IndexedFaceSet Elements
if True:
if is_coords_written:
fw('%s<Coordinate USE="%s%s" />\n' % (ident, 'coord_', mesh_name_x3d))
if use_normals:
fw('%s<Normal USE="%s%s" />\n' % (ident, 'normals_', mesh_name_x3d))
else:
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<Coordinate ' % ident)))
fw('DEF="%s%s"\n' % ('coord_', mesh_name_x3d))
fw(ident_step + 'point="')
for v in mesh.vertices:
fw('%.6g %.6g %.6g ' % v.co[:])
fw('"\n')
fw(ident_step + '/>\n')
is_coords_written = True
if use_normals:
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<Normal ' % ident)))
fw('DEF="%s%s"\n' % ('normals_', mesh_name_x3d))
fw(ident_step + 'vector="')
for v in mesh.vertices:
fw('%.6g %.6g %.6g ' % v.normal[:])
fw('"\n')
fw(ident_step + '/>\n')
if is_uv:
fw('%s<TextureCoordinate point="' % ident)
for i in face_group:
for uv in mesh_faces_uv[i].uv:
fw('%.4g %.4g ' % uv[:])
del mesh_faces_uv
fw('" />\n')
if is_col:
fw('%s<Color color="' % ident)
# XXX, 1 color per face, only
for i in face_group:
fw('%.3g %.3g %.3g ' % mesh_faces_col[i].color1[:])
fw('" />\n')
#--- output vertexColors
#--- output closing braces
ident = ident[:-1]
fw('%s</IndexedFaceSet>\n' % ident)
ident = ident[:-1]
fw('%s</Shape>\n' % ident)
ident = ident[:-1]
fw('%s</Group>\n' % ident)
ident = ident[:-1]
fw('%s</Transform>\n' % ident)
if use_halonode:
ident = ident[:-1]
fw('%s</Billboard>\n' % ident)
elif use_billnode:
ident = ident[:-1]
fw('%s</Billboard>\n' % ident)
elif use_collnode:
ident = ident[:-1]
fw('%s</Collision>\n' % ident)
def writeMaterial(ident, mat, material_id, world):
# look up material name, use it if available
if mat.tag:
fw('%s<Material USE="MA_%s" />\n' % (ident, material_id))
else:
mat.tag = True
emit = mat.emit
ambient = mat.ambient / 3.0
diffuseColor = mat.diffuse_color[:]
if world:
ambiColor = tuple(((c * mat.ambient) * 2.0) for c in world.ambient_color)
else:
ambiColor = 0.0, 0.0, 0.0
emitColor = tuple(((c * emit) + ambiColor[i]) / 2.0 for i, c in enumerate(diffuseColor))
shininess = mat.specular_hardness / 512.0
specColor = tuple((c + 0.001) / (1.25 / (mat.specular_intensity + 0.001)) for c in mat.specular_color)
transp = 1.0 - mat.alpha
if mat.use_shadeless:
ambient = 1.0
shininess = 0.0
specColor = emitColor = diffuseColor
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<Material ' % ident)))
fw('DEF="MA_%s"\n' % material_id)
fw(ident_step + 'diffuseColor="%.3g %.3g %.3g"\n' % clamp_color(diffuseColor))
fw(ident_step + 'specularColor="%.3g %.3g %.3g"\n' % clamp_color(specColor))
fw(ident_step + 'emissiveColor="%.3g %.3g %.3g"\n' % clamp_color(emitColor))
fw(ident_step + 'ambientIntensity="%.3g"\n' % ambient)
fw(ident_step + 'shininess="%.3g"\n' % shininess)
fw(ident_step + 'transparency="%s"\n' % transp)
fw(ident_step + '/>\n')
def writeMaterialH3D(ident, mat, material_id, world,
obj, gpu_shader):
fw('%s<Material />\n' % ident)
if mat.tag:
fw('%s<ComposedShader USE="MA_%s" />\n' % (ident, material_id))
else:
mat.tag = True
#~ CD_MCOL 6
#~ CD_MTFACE 5
#~ CD_ORCO 14
#~ CD_TANGENT 18
#~ GPU_DATA_16F 7
#~ GPU_DATA_1F 2
#~ GPU_DATA_1I 1
#~ GPU_DATA_2F 3
#~ GPU_DATA_3F 4
#~ GPU_DATA_4F 5
#~ GPU_DATA_4UB 8
#~ GPU_DATA_9F 6
#~ GPU_DYNAMIC_LAMP_DYNCO 7
#~ GPU_DYNAMIC_LAMP_DYNCOL 11
#~ GPU_DYNAMIC_LAMP_DYNENERGY 10
#~ GPU_DYNAMIC_LAMP_DYNIMAT 8
#~ GPU_DYNAMIC_LAMP_DYNPERSMAT 9
#~ GPU_DYNAMIC_LAMP_DYNVEC 6
#~ GPU_DYNAMIC_OBJECT_COLOR 5
#~ GPU_DYNAMIC_OBJECT_IMAT 4
#~ GPU_DYNAMIC_OBJECT_MAT 2
#~ GPU_DYNAMIC_OBJECT_VIEWIMAT 3
#~ GPU_DYNAMIC_OBJECT_VIEWMAT 1
#~ GPU_DYNAMIC_SAMPLER_2DBUFFER 12
#~ GPU_DYNAMIC_SAMPLER_2DIMAGE 13
#~ GPU_DYNAMIC_SAMPLER_2DSHADOW 14
'''
inline const char* typeToString( X3DType t ) {
switch( t ) {
case SFFLOAT: return "SFFloat";
case MFFLOAT: return "MFFloat";
case SFDOUBLE: return "SFDouble";
case MFDOUBLE: return "MFDouble";
case SFTIME: return "SFTime";
case MFTIME: return "MFTime";
case SFINT32: return "SFInt32";
case MFINT32: return "MFInt32";
case SFVEC2F: return "SFVec2f";
case MFVEC2F: return "MFVec2f";
case SFVEC2D: return "SFVec2d";
case MFVEC2D: return "MFVec2d";
case SFVEC3F: return "SFVec3f";
case MFVEC3F: return "MFVec3f";
case SFVEC3D: return "SFVec3d";
case MFVEC3D: return "MFVec3d";
case SFVEC4F: return "SFVec4f";
case MFVEC4F: return "MFVec4f";
case SFVEC4D: return "SFVec4d";
case MFVEC4D: return "MFVec4d";
case SFBOOL: return "SFBool";
case MFBOOL: return "MFBool";
case SFSTRING: return "SFString";
case MFSTRING: return "MFString";
case SFNODE: return "SFNode";
case MFNODE: return "MFNode";
case SFCOLOR: return "SFColor";
case MFCOLOR: return "MFColor";
case SFCOLORRGBA: return "SFColorRGBA";
case MFCOLORRGBA: return "MFColorRGBA";
case SFROTATION: return "SFRotation";
case MFROTATION: return "MFRotation";
case SFQUATERNION: return "SFQuaternion";
case MFQUATERNION: return "MFQuaternion";
case SFMATRIX3F: return "SFMatrix3f";
case MFMATRIX3F: return "MFMatrix3f";
case SFMATRIX4F: return "SFMatrix4f";
case MFMATRIX4F: return "MFMatrix4f";
case SFMATRIX3D: return "SFMatrix3d";
case MFMATRIX3D: return "MFMatrix3d";
case SFMATRIX4D: return "SFMatrix4d";
case MFMATRIX4D: return "MFMatrix4d";
case UNKNOWN_X3D_TYPE:
default:return "UNKNOWN_X3D_TYPE";
'''
import gpu
fw('%s<ComposedShader DEF="MA_%s" language="GLSL" >\n' % (ident, material_id))
ident += '\t'
shader_url_frag = 'shaders/glsl_%s.frag' % material_id
shader_url_vert = 'shaders/glsl_%s.vert' % material_id
# write files
shader_dir = os.path.join(dirname, 'shaders')
if not os.path.isdir(shader_dir):
os.mkdir(shader_dir)
for uniform in gpu_shader['uniforms']:
if uniform['type'] == gpu.GPU_DYNAMIC_SAMPLER_2DIMAGE:
fw('%s<field name="%s" type="SFNode" accessType="inputOutput">\n' % (ident, uniform['varname']))
writeImageTexture(ident + '\t', bpy.data.images[uniform['image']])
fw('%s</field>\n' % ident)
elif uniform['type'] == gpu.GPU_DYNAMIC_LAMP_DYNCO:
if uniform['datatype'] == gpu.GPU_DATA_3F: # should always be true!
value = '%.6g %.6g %.6g' % (global_matrix * bpy.data.objects[uniform['lamp']].matrix_world).to_translation()[:]
fw('%s<field name="%s" type="SFVec3f" accessType="inputOutput" value="%s" />\n' % (ident, uniform['varname'], value))
else:
assert(0)
elif uniform['type'] == gpu.GPU_DYNAMIC_LAMP_DYNCOL:
# odd we have both 3, 4 types.
lamp = bpy.data.objects[uniform['lamp']].data
value = '%.6g %.6g %.6g' % (lamp.color * lamp.energy)[:]
if uniform['datatype'] == gpu.GPU_DATA_3F:
fw('%s<field name="%s" type="SFVec3f" accessType="inputOutput" value="%s" />\n' % (ident, uniform['varname'], value))
elif uniform['datatype'] == gpu.GPU_DATA_4F:
fw('%s<field name="%s" type="SFVec4f" accessType="inputOutput" value="%s 1.0" />\n' % (ident, uniform['varname'], value))
else:
assert(0)
elif uniform['type'] == gpu.GPU_DYNAMIC_LAMP_DYNVEC:
if uniform['datatype'] == gpu.GPU_DATA_3F:
value = '%.6g %.6g %.6g' % (mathutils.Vector((0.0, 0.0, 1.0)) * (global_matrix * bpy.data.objects[uniform['lamp']].matrix_world).to_quaternion()).normalized()[:]
fw('%s<field name="%s" type="SFVec3f" accessType="inputOutput" value="%s" />\n' % (ident, uniform['varname'], value))
else:
assert(0)
elif uniform['type'] == gpu.GPU_DYNAMIC_OBJECT_VIEWIMAT:
if uniform['datatype'] == gpu.GPU_DATA_16F:
# must be updated dynamically
# TODO, write out 'viewpointMatrices.py'
value = ' '.join(['%.6f' % f for v in mathutils.Matrix() for f in v])
fw('%s<field name="%s" type="SFMatrix4f" accessType="inputOutput" value="%s" />\n' % (ident, uniform['varname'], value))
else:
assert(0)
elif uniform['type'] == gpu.GPU_DYNAMIC_OBJECT_IMAT:
if uniform['datatype'] == gpu.GPU_DATA_16F:
value = ' '.join(['%.6f' % f for v in (global_matrix * obj.matrix_world).inverted() for f in v])
fw('%s<field name="%s" type="SFMatrix4f" accessType="inputOutput" value="%s" />\n' % (ident, uniform['varname'], value))
else:
assert(0)
elif uniform['type'] == gpu.GPU_DYNAMIC_SAMPLER_2DSHADOW:
pass # XXX, shadow buffers not supported.
elif uniform['type'] == gpu.GPU_DYNAMIC_SAMPLER_2DBUFFER:
if uniform['datatype'] == gpu.GPU_DATA_1I:
if 1:
value = ' '.join(['%d' % f for f in uniform['texpixels']])
# value = ' '.join(['%.6g' % (f / 256) for f in uniform['texpixels']])
fw('%s<field name="%s" type="SFInt32" accessType="inputOutput" value="%s" />\n' % (ident, uniform['varname'], value))
print("ass", len(uniform['texpixels']))
else:
assert(0)
file_frag = open(os.path.join(dirname, shader_url_frag), 'w')
file_frag.write(gpu_shader['fragment'])
file_frag.close()
file_vert = open(os.path.join(dirname, shader_url_vert), 'w')
file_vert.write(gpu_shader['vertex'])
file_vert.close()
fw('%s<ShaderPart type="FRAGMENT" url="%s" />\n' % (ident, shader_url_frag))
fw('%s<ShaderPart type="VERTEX" url="%s" />\n' % (ident, shader_url_vert))
ident = ident[:-1]
fw('%s</ComposedShader>\n' % ident)
def writeImageTexture(ident, image):
name = image.name
if image.tag:
fw('%s<ImageTexture USE="%s" />\n' % (ident, clean_str(name)))
else:
image.tag = True
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<ImageTexture ' % ident)))
fw('DEF="%s"\n' % clean_str(name))
filepath = image.filepath
filepath_full = bpy.path.abspath(filepath)
# collect image paths, can load multiple
# [relative, name-only, absolute]
images = []
if bpy.path.is_subdir(filepath_full, dirname):
images.append(os.path.relpath(filepath_full, dirname))
images.append(os.path.basename(filepath_full))
images.append(filepath_full)
fw(ident_step + "url='%s' " % ' '.join(['"%s"' % f.replace('\\', '/') for f in images]))
fw(ident_step + '/>\n')
def writeBackground(ident, world):
if world:
worldname = world.name
else:
return
blending = world.use_sky_blend, world.use_sky_paper, world.use_sky_real
grd_triple = clamp_color(world.horizon_color)
sky_triple = clamp_color(world.zenith_color)
mix_triple = clamp_color((grd_triple[i] + sky_triple[i]) / 2.0 for i in range(3))
ident_step = ident + (' ' * (-len(ident) + \
fw('%s<Background ' % ident)))
fw('DEF="%s"\n' % secureName(worldname))
# No Skytype - just Hor color
if blending == (False, False, False):
fw(ident_step + 'groundColor="%.3g %.3g %.3g"\n' % grd_triple)
fw(ident_step + 'skyColor="%.3g %.3g %.3g"\n' % grd_triple)
# Blend Gradient
elif blending == (True, False, False):
fw(ident_step + 'groundColor="%.3g %.3g %.3g, %.3g %.3g %.3g"\n' % (grd_triple + mix_triple))
fw(ident_step + 'groundAngle="1.57, 1.57"\n')
fw(ident_step + 'skyColor="%.3g %.3g %.3g, %.3g %.3g %.3g"\n' % (sky_triple + mix_triple))
fw(ident_step + 'skyAngle="1.57, 1.57"\n')
# Blend+Real Gradient Inverse
elif blending == (True, False, True):
fw(ident_step + 'groundColor="%.3g %.3g %.3g, %.3g %.3g %.3g"\n' % (sky_triple + grd_triple))
fw(ident_step + 'groundAngle="1.57"\n')
fw(ident_step + 'skyColor="%.3g %.3g %.3g, %.3g %.3g %.3g, %.3g %.3g %.3g"\n' % (sky_triple + grd_triple + sky_triple))
fw(ident_step + 'skyAngle="1.57, 3.14159"\n')
# Paper - just Zen Color
elif blending == (False, False, True):
fw(ident_step + 'groundColor="%.3g %.3g %.3g"\n' % sky_triple)
fw(ident_step + 'skyColor="%.3g %.3g %.3g"\n' % sky_triple)
# Blend+Real+Paper - komplex gradient
elif blending == (True, True, True):
fw(ident_step + 'groundColor="%.3g %.3g %.3g, %.3g %.3g %.3g"\n' % (sky_triple + grd_triple))
fw(ident_step + 'groundAngle="1.57, 1.57"\n')
fw(ident_step + 'skyColor="%.3g %.3g %.3g, %.3g %.3g %.3g"\n' % (sky_triple + grd_triple))
fw(ident_step + 'skyAngle="1.57, 1.57"\n')
# Any Other two colors
else:
fw(ident_step + 'groundColor="%.3g %.3g %.3g"\n' % grd_triple)
fw(ident_step + 'skyColor="%.3g %.3g %.3g"\n' % sky_triple)
for tex in bpy.data.textures:
if tex.type == 'IMAGE' and tex.image:
namemat = tex.name
pic = tex.image
basename = os.path.basename(bpy.path.abspath(pic.filepath))
if namemat == 'back':
fw(ident_step + 'backUrl="%s"\n' % basename)
elif namemat == 'bottom':
fw(ident_step + 'bottomUrl="%s"\n' % basename)
elif namemat == 'front':
fw(ident_step + 'frontUrl="%s"\n' % basename)
elif namemat == 'left':
fw(ident_step + 'leftUrl="%s"\n' % basename)
elif namemat == 'right':
fw(ident_step + 'rightUrl="%s"\n' % basename)
elif namemat == 'top':
fw(ident_step + 'topUrl="%s"\n' % basename)
fw(ident_step + '/>\n')
##########################################################
# export routine
##########################################################
def export_main():
world = scene.world
# tag un-exported IDs
bpy.data.meshes.tag(False)
bpy.data.materials.tag(False)
bpy.data.images.tag(False)
print('Info: starting X3D export to %r...' % file.name)
ident = ''
ident = writeHeader(ident)
writeNavigationInfo(ident, scene)
writeBackground(ident, world)
writeFog(ident, world)
ident = '\t\t'
if use_selection:
objects = (obj for obj in scene.objects if obj.is_visible(scene) and o.select)
else:
objects = (obj for obj in scene.objects if obj.is_visible(scene))
for obj_main in objects:
free, derived = create_derived_objects(scene, obj_main)
if derived is None:
continue
for obj, obj_matrix in derived:
obj_type = obj.type
obj_matrix = global_matrix * obj_matrix
if obj_type == 'CAMERA':
writeViewpoint(ident, obj, obj_matrix, scene)
elif obj_type in ('MESH', 'CURVE', 'SURF', 'FONT'):
if (obj_type != 'MESH') or (use_apply_modifiers and obj.is_modified(scene, 'PREVIEW')):
try:
me = obj.to_mesh(scene, use_apply_modifiers, 'PREVIEW')
except:
me = None
else:
me = obj.data
if me is not None:
writeIndexedFaceSet(ident, obj, me, obj_matrix, world)
# free mesh created with create_mesh()
if me != obj.data:
bpy.data.meshes.remove(me)
elif obj_type == 'LAMP':
data = obj.data
datatype = data.type
if datatype == 'POINT':
writePointLight(ident, obj, obj_matrix, data, world)
elif datatype == 'SPOT':
writeSpotLight(ident, obj, obj_matrix, data, world)
elif datatype == 'SUN':
writeDirectionalLight(ident, obj, obj_matrix, data, world)
else:
writeDirectionalLight(ident, obj, obj_matrix, data, world)
else:
#print "Info: Ignoring [%s], object type [%s] not handle yet" % (object.name,object.getType)
pass
if free:
free_derived_objects(obj_main)
ident = writeFooter(ident)
export_main()
file.close()
# -------------------------------------------------------------------------
# global cleanup
# -------------------------------------------------------------------------
if use_h3d:
bpy.data.materials.remove(gpu_shader_dummy_mat)
print('Info: finished X3D export to %r' % file.name)
##########################################################
# Callbacks, needed before Main
##########################################################
def save(operator, context, filepath="",
use_selection=True,
use_apply_modifiers=False,
use_triangulate=False,
use_normals=False,
use_compress=False,
use_h3d=False,
global_matrix=None,
):
py.path.ensure_ext(filepath, '.x3dz' if use_compress else '.x3d')
if bpy.ops.object.mode_set.poll():
bpy.ops.object.mode_set(mode='OBJECT')
file = None
if use_compress:
try:
import gzip
file = gzip.open(filepath, 'w')
except:
print('failed to import compression modules, exporting uncompressed')
filepath = filepath[:-1] # remove trailing z
if file is None:
file = open(filepath, 'w')
if global_matrix is None:
global_matrix = mathutils.Matrix()
export(file,
global_matrix,
context.scene,
use_apply_modifiers=use_apply_modifiers,
use_selection=use_selection,
use_triangulate=use_triangulate,
use_normals=use_normals,
use_h3d=use_h3d,
)
return {'FINISHED'}