Skip to content
Snippets Groups Projects
Select Git revision
  • c86080a455579a8c770545e33b95513b43e1a43b
  • master default protected
  • blender-v3.6-release
  • main
  • blender-v4.1-release
  • blender-v4.0-release
  • blender-v3.3-release
  • asset-shelf
  • blender-v3.5-release
  • brush-assets-project
  • blender-v2.93-release
  • blender-v3.4-release
  • xr-dev
  • bholodeck-v3.3
  • blender-v3.2-release
  • temp-xr-tracker
  • blender-v3.1-release
  • screenshots-manual
  • gltf_vtree
  • blender-v2.83-release
  • blender-v3.0-release
  • v3.6.18
  • v3.6.19
  • v3.6.20
  • v3.6.21
  • v3.6.22
  • v3.6.23
  • v4.1.1
  • v4.1.0
  • v3.6.10
  • v3.6.11
  • v3.6.12
  • v3.6.13
  • v3.6.14
  • v3.6.15
  • v3.6.16
  • v3.6.17
  • v3.6.9
  • v3.3.16
  • v3.6.8
  • v3.3.15
41 results

add_mesh_round_brilliant.py

Blame
  • add_mesh_round_brilliant.py 13.77 KiB
    # GPL "author": "Dominic Kröper, (dommetysk)"
    
    import bpy
    from math import pi, sin, cos, tan
    from bpy.types import Operator
    from mathutils import Vector, Euler
    from bpy.props import (
            IntProperty,
            FloatProperty,
            BoolProperty,
            )
    
    
    # mesh/object generating function, returns final object
    
    def addBrilliant(context, s, table_w, crown_h, girdle_t, pavi_d, bezel_f,
                     pavi_f, culet, girdle_real, keep_lga, g_real_smooth):
    
        # # possible user inputs  ( output 100% = 2 blender units )
        # s                   # no. of girdle facets (steps)  default: 16
        # table_w             # table width                   default: 0.530
        # crown_h             # crown height                  default: 0.162
        # girdle_t            # girdle thickness              default: 0.017
        # pavi_d              # pavillion depth               default: 0.431
        # bezel_f             # bezel factor                  default: 0.250
        # pavi_f              # pavillion factor              default: 0.400
        # culet               # culet size                    default: 0.000
        # girdle_real         # type of girdle flat/real      default: True
        # g_real_smooth       # smooth or flat shading        default: False
        # keep_lga            # when culet > 0, keep lga      default: False
    
        # variables / shortcuts
        if s % 2:                   # prevent odd number of steps (messes up mesh)
            s = s - 1
        if not girdle_real:
            g_real_smooth = False
        ang = 2 * pi / s                            # angle step size
        Verts = []                              # collect all vertices
        Faces = []                              # collect all faces
        ca = cos(ang)
        ca2 = cos(ang / 2)
        sa4 = sin(ang / 4)
        ta4 = tan(ang / 4)
        ta8 = tan(ang / 8)
    
        def fa(*vs):                            # shortcut Faces.append
            v = []
            for u in vs:
                v.append(u)
            Faces.append(v)
    
        def va(vx, vz, iang, sang, n):          # shortcut Verts.append
            for i in range(n):
                v = Vector((vx, 0, vz))
                ai = sang + iang * i
                E_rot = Euler((0, 0, ai), 'XYZ')
                v.rotate(E_rot)
                Verts.append((v.x, v.y, v.z))
    
        # upper girdle angle
        uga = (1 - bezel_f) * crown_h * 2 / (ca2 -
               (table_w + (1 - table_w) * bezel_f) * ca2 / ca)
    
        # lower girdle angle
        if keep_lga:
            if pavi_f > 0 and pavi_f < 1:
                lga = (1 - pavi_f) * pavi_d * 2 / (ca2 - pavi_f * ca2 / ca)
            elif pavi_f == 1:
                lga = 0
            else:
                lga = 2 * pavi_d * ca
        else:
            lga = (1 - pavi_f) * pavi_d * 2 / (ca2 -
                   (culet + (1 - culet) * pavi_f) * ca2 / ca)
    
        # append girdle vertices
        va(1, 0, ang, 0, s)
        va(1, 2 * girdle_t, ang, 0, s)
    
        # append real girdle vertices
        if girdle_real:
            dnu = uga * (1 - ca2)
            dfu = uga * (ta8 + ta4) * sa4
            dnl = lga * (1 - ca2)
            dfl = lga * (ta8 + ta4) * sa4
            if abs(dnu) + abs(dnl) > 2 * girdle_t or dnu < 0 or dnl < 0:
                girdle_real = False
            else:
                va(1, dnl, ang, ang / 2, s)
                va(1, 2 * girdle_t - dnu, ang, ang / 2, s)
                va(1, dfl, ang / 2, ang / 4, 2 * s)
                va(1, 2 * girdle_t - dfu, ang / 2, ang / 4, 2 * s)
    
        # make girdle faces
        l1 = len(Verts)             # 2*s / 8*s
        for i in range(l1):
            if girdle_real:
                if i < s:
                    fa(i, i + s, 2 * i + 6 * s, 2 * i + 4 * s)
                    if i == 0:
                        fa(i, s, l1 - 1, 6 * s - 1)
                    else:
                        fa(i, i + s, 2 * i + 6 * s - 1, 2 * i + 4 * s - 1)
                elif i > 2 * s - 1 and i < 3 * s:
                    fa(i, i + s, 2 * (i + s), 2 * i)
                    fa(i, i + s, 2 * (i + s) + 1, 2 * i + 1)
            else:
                if i < s - 1:
                    fa(i, i + s, i + s + 1, i + 1)
                elif i == s - 1:
                    fa(i, i + s, s, 0)
    
        # append upper girdle facet vertices
        va((table_w + (1 - table_w) * bezel_f) / ca, (1 - bezel_f) * 2 * crown_h +
           2 * girdle_t, 2 * ang, ang, int(s / 2))
    
        # make upper girdle facet faces
        l2 = len(Verts)             # 2.5*s / 8.5*s
        for i in range(l2):
            if i > s and i < 2 * s - 1 and i % 2 != 0:
                if girdle_real:
                    fa(i, 2 * (i + 2 * s), i + 2 * s, 2 * (i + 2 * s) + 1, i + 1,
                       int(7.5 * s) + int((i - 1) / 2))
                    fa(i, 2 * (i + 2 * s) - 1, i + 2 * s - 1, 2 * (i + 2 * s - 1),
                       i - 1, int(7.5 * s) + int((i - 1) / 2))
                else:
                    fa(i, i + 1, int((i + 3 * s) / 2))
                    fa(i, i - 1, int((i + 3 * s) / 2))
            elif i == s:
                if girdle_real:
                    fa(i, l1 - 1, 4 * s - 1, l1 - 2, 2 * i - 1, l2 - 1)
                    fa(2 * i - 2, l1 - 4, 4 * s - 2, l1 - 3, 2 * i - 1, l2 - 1)
                else:
                    fa(i, 2 * i - 1, l2 - 1)
                    fa(2 * i - 1, 2 * i - 2, l2 - 1)
    
        # append table vertices
        va(table_w, (crown_h + girdle_t) * 2, 2 * ang, 0, int(s / 2))
    
        # make bezel facet faces and star facet faces
        l3 = len(Verts)             # 3*s / 9*s
        for i in range(l3):
            if i > l2 - 1 and i < l3 - 1:
                fa(i, i + 1, i - int(s / 2))
                fa(i + 1, i - int(s / 2), 2 * (i - l2) + 2 + s, i - int(s / 2) + 1)
            elif i == l3 - 1:
                fa(i, l2, l2 - 1)
                fa(s, l2 - 1, l2, l2 - int(s / 2))
    
        # make table facet face
        tf = []
        for i in range(l3):
            if i > l2 - 1:
                tf.append(i)
        fa(*tf)
    
        # append lower girdle facet vertices
        if keep_lga:
            va(pavi_f / ca, (pavi_f - 1) * pavi_d * 2, 2 * ang, ang, int(s / 2))
        else:
            va((pavi_f * (1 - culet) + culet) / ca, (pavi_f - 1) * pavi_d * 2, 2 * ang,
               ang, int(s / 2))
    
        # make lower girdle facet faces
        l4 = len(Verts)             # 3.5*s / 9.5*s
        for i in range(l4):
            if i > 0 and i < s - 1 and i % 2 == 0:
                if girdle_real:
                    fa(i, 2 * (i + 2 * s), i + 2 * s, 2 * (i + 2 * s) + 1, i + 1,
                       int(i / 2) + 9 * s)
                    fa(i, 2 * (i + 2 * s) - 1, i + 2 * s - 1, 2 * (i + 2 * s - 1),
                       i - 1, int(i / 2) + 9 * s - 1)
                else:
                    fa(i, i + 1, int(i / 2) + l4 - int(s / 2))
                    fa(i, i - 1, int(i / 2) + l4 - int(s / 2) - 1)
            elif i == 0:
                if girdle_real:
                    fa(0, 4 * s, 2 * s, 4 * s + 1, 1, 9 * s)
                    fa(0, 6 * s - 1, 3 * s - 1, 6 * s - 2, s - 1, l4 - 1)
                else:
                    fa(0, 1, l4 - int(s / 2))
                    fa(0, s - 1, l4 - 1)
    
        # append culet vertice(s)
        if culet == 0:
            va(0, pavi_d * (-2), 0, 0, 1)
        else:
            if keep_lga:
                va(culet * pavi_f / ca, pavi_d * (-2) + culet * pavi_f * 2 * pavi_d,
                   2 * ang, ang, int(s / 2))
            else:
                va(culet / ca, pavi_d * (-2), 2 * ang, ang, int(s / 2))
    
        # make pavillion facet face
        l5 = len(Verts)             # 4*s / 10*s  //if !culet: 3.5*s+1 / 9.5*s+1
        for i in range(l5):
            if i > 0 and i < s - 1 and i % 2 == 0:
                if culet:
                    fa(i, l3 + int(i / 2), l3 + int((s + i) / 2),
                       l3 + int((s + i) / 2) - 1, l3 + int(i / 2) - 1)
                else:
                    fa(i, l3 + int(i / 2), l5 - 1, l3 + int(i / 2) - 1)
            elif i == 0:
                if culet:
                    fa(i, l3, l4, l5 - 1, l4 - 1)
                else:
                    fa(i, l3, l5 - 1, l4 - 1)
    
        # make culet facet face
        if culet:
            cf = []
            for i in range(l5):
                if i > l4 - 1:
                    cf.append(i)
            fa(*cf)
    
        # bpy variables / shortcuts
        scene = bpy.context.scene
    
        # deactivate possible active Objects
        bpy.context.scene.objects.active = None
    
        # create actual mesh and object based on Verts and Faces given
        dmesh = bpy.data.meshes.new("dmesh")
        dmesh.from_pydata(Verts, [], Faces)
        dmesh.update()
    
        # Create object and link it into scene.
        from bpy_extras import object_utils
        dobj = object_utils.object_data_add(context, dmesh, operator=None, name="dobj").object
    
        # activate and select object
        scene.objects.active = dobj
        dobj.select = True
        obj = bpy.context.active_object
    
        # flip all face normals outside
        bpy.ops.object.mode_set(mode='EDIT', toggle=False)
        sel_mode = bpy.context.tool_settings.mesh_select_mode
        bpy.context.tool_settings.mesh_select_mode = [False, False, True]
        bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
        for i, face in enumerate(obj.data.polygons):
            face.select = True
        bpy.ops.object.mode_set(mode='EDIT', toggle=False)
        bpy.ops.mesh.normals_make_consistent(inside=False)
        bpy.context.tool_settings.mesh_select_mode = sel_mode
        bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
    
        # make girdle smooth for complex girdle
        if girdle_real and g_real_smooth:
    
            bpy.ops.object.mode_set(mode='EDIT', toggle=False)
    
            bpy.ops.mesh.select_all(action='DESELECT')  # deselect all mesh data
            bpy.ops.object.mode_set(mode='OBJECT')
            pls = []
            dp = obj.data.polygons[:4 * s]              # only consider faces of girdle
            ov = obj.data.vertices
    
            for i, p in enumerate(dp):
                pls.extend(p.vertices)                  # list all verts of girdle
    
            for i, e in enumerate(obj.data.edges):      # select egdes to mark sharp
                if e.vertices[0] in pls and e.vertices[1] in pls and abs(
                                ov[e.vertices[0]].co.x - ov[e.vertices[1]].co.x):
                    obj.data.edges[i].select = True
                    continue
                obj.data.edges[i].select = False
    
            bpy.ops.object.mode_set(mode='EDIT', toggle=False)
            bpy.ops.mesh.mark_sharp()
    
            bpy.context.tool_settings.mesh_select_mode = [False, False, True]
            bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
            bpy.ops.object.select_all(action='DESELECT')
            for i, face in enumerate(obj.data.polygons):
                if i < 4 * s:
                    face.select = True
                    continue
                face.select = False
            bpy.ops.object.mode_set(mode='EDIT', toggle=False)
            bpy.ops.mesh.faces_shade_smooth()
    
            bpy.ops.object.modifier_add(type='EDGE_SPLIT')
    
            bpy.context.tool_settings.mesh_select_mode = sel_mode
            bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
    
            bpy.ops.object.modifier_apply(apply_as='DATA', modifier="EdgeSplit")
    
        return dobj
    
    
    # add new operator for object
    class MESH_OT_primitive_brilliant_add(Operator):
        bl_idname = "mesh.primitive_brilliant_add"
        bl_label = "Custom Brilliant"
        bl_description = "Contruct a custom brilliant mesh"
        bl_options = {'REGISTER', 'UNDO', 'PRESET'}
    
        # set user options
        s = IntProperty(
                    name="Segments",
                    description="Longitudial segmentation",
                    step=1,
                    min=6,
                    max=128,
                    default=16,
                    subtype='FACTOR'
                    )
        table_w = FloatProperty(
                    name="Table width",
                    description="Width of table",
                    min=0.001,
                    max=1.0,
                    default=0.53,
                    subtype='PERCENTAGE'
                    )
        crown_h = FloatProperty(
                    name="Crown height",
                    description="Heigth of crown",
                    min=0.0,
                    max=1.0,
                    default=0.162,
                    subtype='PERCENTAGE'
                    )
        girdle_t = FloatProperty(
                    name="Girdle height",
                    description="Height of girdle",
                    min=0.0,
                    max=0.5,
                    default=0.017,
                    subtype='PERCENTAGE'
                    )
        girdle_real = BoolProperty(
                    name="Real girdle",
                    description="More beautiful girdle; has more polygons",
                    default=True
                    )
        g_real_smooth = BoolProperty(
                    name="Smooth girdle",
                    description="smooth shading for girdle, only available for real girdle",
                    default=False
                    )
        pavi_d = FloatProperty(
                    name="Pavilion depth",
                    description="Height of pavillion",
                    min=0.0,
                    max=1.0,
                    default=0.431,
                    subtype='PERCENTAGE'
                    )
        bezel_f = FloatProperty(
                    name="Upper facet factor",
                    description="Determines the form of bezel and upper girdle facets",
                    min=0.0,
                    max=1.0,
                    default=0.250,
                    subtype='PERCENTAGE'
                    )
        pavi_f = FloatProperty(
                    name="Lower facet factor",
                    description="Determines the form of pavillion and lower girdle facets",
                    min=0.001,
                    max=1.0,
                    default=0.400,
                    subtype='PERCENTAGE'
                    )
        culet = FloatProperty(
                    name="Culet size",
                    description="0: no culet (default)",
                    min=0.0,
                    max=0.999,
                    default=0.0,
                    subtype='PERCENTAGE'
                    )
        keep_lga = BoolProperty(
                    name="Retain lower angle",
                    description="If culet > 0, retains angle of pavillion facets",
                    default=False
                    )
    
        # call mesh/object generator function with user inputs
        def execute(self, context):
            ob = addBrilliant(context, self.s, self.table_w, self.crown_h,
                              self.girdle_t, self.pavi_d, self.bezel_f,
                              self.pavi_f, self.culet, self.girdle_real,
                              self.keep_lga, self.g_real_smooth
                              )
            return {'FINISHED'}