Skip to content
Snippets Groups Projects
uvcalc_smart_project.py 37.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • # --------------------------------------------------------------------------
    # Smart Projection UV Projection Unwrapper v1.2 by Campbell Barton (AKA Ideasman)
    # --------------------------------------------------------------------------
    # ***** BEGIN GPL LICENSE BLOCK *****
    #
    # This program is free software; you can redistribute it and/or
    # modify it under the terms of the GNU General Public License
    # as published by the Free Software Foundation; either version 2
    # of the License, or (at your option) any later version.
    #
    # This program is distributed in the hope that it will be useful,
    # but WITHOUT ANY WARRANTY; without even the implied warranty of
    # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    # GNU General Public License for more details.
    #
    # You should have received a copy of the GNU General Public License
    # along with this program; if not, write to the Free Software Foundation,
    
    Campbell Barton's avatar
    Campbell Barton committed
    # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    
    #
    # ***** END GPL LICENCE BLOCK *****
    # --------------------------------------------------------------------------
    
    from mathutils import Matrix, Vector, geometry
    
    from math import cos, radians
    
    
    DEG_TO_RAD = 0.017453292519943295 # pi/180.0
    SMALL_NUM = 0.000000001
    BIG_NUM = 1e15
    
    global USER_FILL_HOLES
    global USER_FILL_HOLES_QUALITY
    USER_FILL_HOLES = None
    USER_FILL_HOLES_QUALITY = None
    
    dict_matrix = {}
    
    def pointInTri2D(v, v1, v2, v3):
    
        global dict_matrix
    
        key = v1.x, v1.y, v2.x, v2.y, v3.x, v3.y
    
        # Commented because its slower to do teh bounds check, we should realy cache the bounds info for each face.
        '''
        # BOUNDS CHECK
        xmin= 1000000
        ymin= 1000000
    
        xmax= -1000000
        ymax= -1000000
    
        for i in (0,2,4):
            x= key[i]
            y= key[i+1]
    
            if xmax<x:	xmax= x
            if ymax<y:	ymax= y
            if xmin>x:	xmin= x
            if ymin>y:	ymin= y
    
        x= v.x
        y= v.y
    
        if x<xmin or x>xmax or y < ymin or y > ymax:
            return False
        # Done with bounds check
        '''
        try:
            mtx = dict_matrix[key]
            if not mtx:
                return False
        except:
            side1 = v2 - v1
            side2 = v3 - v1
    
            nor = side1.cross(side2)
    
            l1 = [side1[0], side1[1], side1[2]]
            l2 = [side2[0], side2[1], side2[2]]
            l3 = [nor[0], nor[1], nor[2]]
    
            mtx = Matrix(l1, l2, l3)
    
            # Zero area 2d tri, even tho we throw away zerop area faces
            # the projection UV can result in a zero area UV.
            if not mtx.determinant():
                dict_matrix[key] = None
                return False
    
            mtx.invert()
    
            dict_matrix[key] = mtx
    
        uvw = (v - v1) * mtx
        return 0 <= uvw[0] and 0 <= uvw[1] and uvw[0] + uvw[1] <= 1
    
    
    
    def boundsIsland(faces):
    
        minx = maxx = faces[0].uv[0][0] # Set initial bounds.
        miny = maxy = faces[0].uv[0][1]
        # print len(faces), minx, maxx, miny , maxy
        for f in faces:
            for uv in f.uv:
                x= uv.x
                y= uv.y
                if x<minx: minx= x
                if y<miny: miny= y
                if x>maxx: maxx= x
                if y>maxy: maxy= y
    
        return minx, miny, maxx, maxy
    
    
    """
    def boundsEdgeLoop(edges):
    
        minx = maxx = edges[0][0] # Set initial bounds.
        miny = maxy = edges[0][1]
        # print len(faces), minx, maxx, miny , maxy
        for ed in edges:
            for pt in ed:
                print 'ass'
                x= pt[0]
                y= pt[1]
                if x<minx: x= minx
                if y<miny: y= miny
                if x>maxx: x= maxx
                if y>maxy: y= maxy
    
        return minx, miny, maxx, maxy
    
    """
    
    # Turns the islands into a list of unpordered edges (Non internal)
    # Onlt for UV's
    # only returns outline edges for intersection tests. and unique points.
    
    def island2Edge(island):
    
    
        # Vert index edges
        edges = {}
    
        unique_points= {}
    
        for f in island:
            f_uvkey= map(tuple, f.uv)
    
    
            for vIdx, edkey in enumerate(f.edge_keys):
                unique_points[f_uvkey[vIdx]] = f.uv[vIdx]
    
                if f.v[vIdx].index > f.v[vIdx-1].index:
                    i1= vIdx-1;	i2= vIdx
                else:
                    i1= vIdx;	i2= vIdx-1
    
                try:	edges[ f_uvkey[i1], f_uvkey[i2] ] *= 0 # sets eny edge with more then 1 user to 0 are not returned.
                except:	edges[ f_uvkey[i1], f_uvkey[i2] ] = (f.uv[i1] - f.uv[i2]).length,
    
        # If 2 are the same then they will be together, but full [a,b] order is not correct.
    
        # Sort by length
    
    
        length_sorted_edges = [(Vector(key[0]), Vector(key[1]), value) for key, value in edges.items() if value != 0]
    
        try:	length_sorted_edges.sort(key = lambda A: -A[2]) # largest first
        except:	length_sorted_edges.sort(lambda A, B: cmp(B[2], A[2]))
    
        # Its okay to leave the length in there.
        #for e in length_sorted_edges:
        #	e.pop(2)
    
        # return edges and unique points
        return length_sorted_edges, [v.__copy__().resize3D() for v in unique_points.values()]
    
    
    # ========================= NOT WORKING????
    # Find if a points inside an edge loop, un-orderd.
    # pt is and x/y
    # edges are a non ordered loop of edges.
    # #offsets are the edge x and y offset.
    """
    def pointInEdges(pt, edges):
    
        #
        x1 = pt[0]
        y1 = pt[1]
    
        # Point to the left of this line.
        x2 = -100000
        y2 = -10000
        intersectCount = 0
        for ed in edges:
            xi, yi = lineIntersection2D(x1,y1, x2,y2, ed[0][0], ed[0][1], ed[1][0], ed[1][1])
            if xi != None: # Is there an intersection.
                intersectCount+=1
    
        return intersectCount % 2
    
    """
    
    def pointInIsland(pt, island):
    
    Campbell Barton's avatar
    Campbell Barton committed
        vec1, vec2, vec3 = Vector(), Vector(), Vector()
    
        for f in island:
            vec1.x, vec1.y = f.uv[0]
            vec2.x, vec2.y = f.uv[1]
            vec3.x, vec3.y = f.uv[2]
    
            if pointInTri2D(pt, vec1, vec2, vec3):
                return True
    
            if len(f.v) == 4:
                vec1.x, vec1.y = f.uv[0]
                vec2.x, vec2.y = f.uv[2]
                vec3.x, vec3.y = f.uv[3]
                if pointInTri2D(pt, vec1, vec2, vec3):
                    return True
        return False
    
    
    
    # box is (left,bottom, right, top)
    def islandIntersectUvIsland(source, target, SourceOffset):
    
        # Is 1 point in the box, inside the vertLoops
        edgeLoopsSource = source[6] # Pretend this is offset
        edgeLoopsTarget = target[6]
    
        # Edge intersect test
        for ed in edgeLoopsSource:
            for seg in edgeLoopsTarget:
    
    Campbell Barton's avatar
    Campbell Barton committed
                i = geometry.LineIntersect2D(\
    
                seg[0], seg[1], SourceOffset+ed[0], SourceOffset+ed[1])
                if i:
                    return 1 # LINE INTERSECTION
    
        # 1 test for source being totally inside target
        SourceOffset.resize3D()
        for pv in source[7]:
            if pointInIsland(pv+SourceOffset, target[0]):
                return 2 # SOURCE INSIDE TARGET
    
        # 2 test for a part of the target being totaly inside the source.
        for pv in target[7]:
            if pointInIsland(pv-SourceOffset, source[0]):
                return 3 # PART OF TARGET INSIDE SOURCE.
    
        return 0 # NO INTERSECTION
    
    
    
    
    
    # Returns the X/y Bounds of a list of vectors.
    def testNewVecLs2DRotIsBetter(vecs, mat=-1, bestAreaSoFar = -1):
    
    
        # UV's will never extend this far.
        minx = miny = BIG_NUM
        maxx = maxy = -BIG_NUM
    
        for i, v in enumerate(vecs):
    
            # Do this allong the way
            if mat != -1:
                v = vecs[i] = v*mat
                x= v.x
                y= v.y
                if x<minx: minx= x
                if y<miny: miny= y
                if x>maxx: maxx= x
                if y>maxy: maxy= y
    
            # Spesific to this algo, bail out if we get bigger then the current area
            if bestAreaSoFar != -1 and (maxx-minx) * (maxy-miny) > bestAreaSoFar:
                return (BIG_NUM, None), None
        w = maxx-minx
        h = maxy-miny
        return (w*h, w,h), vecs # Area, vecs
    
    
    # Takes a list of faces that make up a UV island and rotate
    # until they optimally fit inside a square.
    
    ROTMAT_2D_POS_90D = Matrix.Rotation( radians(90.0), 2)
    ROTMAT_2D_POS_45D = Matrix.Rotation( radians(45.0), 2)
    
    
    RotMatStepRotation = []
    rot_angle = 22.5 #45.0/2
    while rot_angle > 0.1:
    
         Matrix.Rotation( radians(rot_angle), 2),\
         Matrix.Rotation( radians(-rot_angle), 2)])
    
    
    def optiRotateUvIsland(faces):
    
        global currentArea
    
        # Bestfit Rotation
        def best2dRotation(uvVecs, MAT1, MAT2):
            global currentArea
    
            newAreaPos, newfaceProjectionGroupListPos =\
            testNewVecLs2DRotIsBetter(uvVecs[:], MAT1, currentArea[0])
    
    
            # Why do I use newpos here? May as well give the best area to date for an early bailout
            # some slight speed increase in this.
            # If the new rotation is smaller then the existing, we can
            # avoid copying a list and overwrite the old, crappy one.
    
            if newAreaPos[0] < currentArea[0]:
                newAreaNeg, newfaceProjectionGroupListNeg =\
                testNewVecLs2DRotIsBetter(uvVecs, MAT2, newAreaPos[0])  # Reuse the old bigger list.
            else:
                newAreaNeg, newfaceProjectionGroupListNeg =\
                testNewVecLs2DRotIsBetter(uvVecs[:], MAT2, currentArea[0])  # Cant reuse, make a copy.
    
    
            # Now from the 3 options we need to discover which to use
            # we have cerrentArea/newAreaPos/newAreaNeg
            bestArea = min(currentArea[0], newAreaPos[0], newAreaNeg[0])
    
            if currentArea[0] == bestArea:
                return uvVecs
            elif newAreaPos[0] == bestArea:
                uvVecs = newfaceProjectionGroupListPos
                currentArea = newAreaPos
            elif newAreaNeg[0] == bestArea:
                uvVecs = newfaceProjectionGroupListNeg
                currentArea = newAreaNeg
    
            return uvVecs
    
    
        # Serialized UV coords to Vectors
        uvVecs = [uv for f in faces  for uv in f.uv]
    
        # Theres a small enough number of these to hard code it
        # rather then a loop.
    
        # Will not modify anything
        currentArea, dummy =\
        testNewVecLs2DRotIsBetter(uvVecs)
    
    
        # Try a 45d rotation
        newAreaPos, newfaceProjectionGroupListPos = testNewVecLs2DRotIsBetter(uvVecs[:], ROTMAT_2D_POS_45D, currentArea[0])
    
        if newAreaPos[0] < currentArea[0]:
            uvVecs = newfaceProjectionGroupListPos
            currentArea = newAreaPos
        # 45d done
    
        # Testcase different rotations and find the onfe that best fits in a square
        for ROTMAT in RotMatStepRotation:
            uvVecs = best2dRotation(uvVecs, ROTMAT[0], ROTMAT[1])
    
        # Only if you want it, make faces verticle!
        if currentArea[1] > currentArea[2]:
            # Rotate 90d
            # Work directly on the list, no need to return a value.
            testNewVecLs2DRotIsBetter(uvVecs, ROTMAT_2D_POS_90D)
    
    
        # Now write the vectors back to the face UV's
        i = 0 # count the serialized uv/vectors
        for f in faces:
            #f.uv = [uv for uv in uvVecs[i:len(f)+i] ]
            for j, k in enumerate(range(i, len(f.v)+i)):
                f.uv[j][:] = uvVecs[k]
            i += len(f.v)
    
    
    
    # Takes an island list and tries to find concave, hollow areas to pack smaller islands into.
    def mergeUvIslands(islandList):
    
        global USER_FILL_HOLES
        global USER_FILL_HOLES_QUALITY
    
    
        # Pack islands to bottom LHS
        # Sync with island
    
        #islandTotFaceArea = [] # A list of floats, each island area
        #islandArea = [] # a list of tuples ( area, w,h)
    
    
        decoratedIslandList = []
    
        islandIdx = len(islandList)
        while islandIdx:
            islandIdx-=1
            minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx])
            w, h = maxx-minx, maxy-miny
    
            totFaceArea = 0
    
    Campbell Barton's avatar
    Campbell Barton committed
            offset= Vector((minx, miny))
    
            for f in islandList[islandIdx]:
                for uv in f.uv:
                    uv -= offset
    
                totFaceArea += f.area
    
            islandBoundsArea = w*h
            efficiency = abs(islandBoundsArea - totFaceArea)
    
            # UV Edge list used for intersections as well as unique points.
            edges, uniqueEdgePoints = island2Edge(islandList[islandIdx])
    
            decoratedIslandList.append([islandList[islandIdx], totFaceArea, efficiency, islandBoundsArea, w,h, edges, uniqueEdgePoints])
    
    
        # Sort by island bounding box area, smallest face area first.
        # no.. chance that to most simple edge loop first.
        decoratedIslandListAreaSort =decoratedIslandList[:]
    
        decoratedIslandListAreaSort.sort(key = lambda A: A[3])
    
        # sort by efficiency, Least Efficient first.
        decoratedIslandListEfficSort = decoratedIslandList[:]
        # decoratedIslandListEfficSort.sort(lambda A, B: cmp(B[2], A[2]))
    
        decoratedIslandListEfficSort.sort(key = lambda A: -A[2])
    
        # ================================================== THESE CAN BE TWEAKED.
        # This is a quality value for the number of tests.
        # from 1 to 4, generic quality value is from 1 to 100
        USER_STEP_QUALITY =   ((USER_FILL_HOLES_QUALITY - 1) / 25.0) + 1
    
        # If 100 will test as long as there is enough free space.
        # this is rarely enough, and testing takes a while, so lower quality speeds this up.
    
        # 1 means they have the same quality
        USER_FREE_SPACE_TO_TEST_QUALITY = 1 + (((100 - USER_FILL_HOLES_QUALITY)/100.0) *5)
    
        #print 'USER_STEP_QUALITY', USER_STEP_QUALITY
        #print 'USER_FREE_SPACE_TO_TEST_QUALITY', USER_FREE_SPACE_TO_TEST_QUALITY
    
        removedCount = 0
    
        areaIslandIdx = 0
        ctrl = Window.Qual.CTRL
        BREAK= False
        while areaIslandIdx < len(decoratedIslandListAreaSort) and not BREAK:
            sourceIsland = decoratedIslandListAreaSort[areaIslandIdx]
            # Alredy packed?
            if not sourceIsland[0]:
                areaIslandIdx+=1
            else:
                efficIslandIdx = 0
                while efficIslandIdx < len(decoratedIslandListEfficSort) and not BREAK:
    
                    if Window.GetKeyQualifiers() & ctrl:
                        BREAK= True
                        break
    
                    # Now we have 2 islands, is the efficience of the islands lowers theres an
                    # increasing likely hood that we can fit merge into the bigger UV island.
                    # this ensures a tight fit.
    
                    # Just use figures we have about user/unused area to see if they might fit.
    
                    targetIsland = decoratedIslandListEfficSort[efficIslandIdx]
    
    
                    if sourceIsland[0] == targetIsland[0] or\
                    not targetIsland[0] or\
                    not sourceIsland[0]:
                        pass
                    else:
    
                        # ([island, totFaceArea, efficiency, islandArea, w,h])
                        # Waisted space on target is greater then UV bounding island area.
    
    
                        # if targetIsland[3] > (sourceIsland[2]) and\ #
                        # print USER_FREE_SPACE_TO_TEST_QUALITY, 'ass'
                        if targetIsland[2] > (sourceIsland[1] * USER_FREE_SPACE_TO_TEST_QUALITY) and\
                        targetIsland[4] > sourceIsland[4] and\
                        targetIsland[5] > sourceIsland[5]:
    
                            # DEBUG # print '%.10f  %.10f' % (targetIsland[3], sourceIsland[1])
    
                            # These enough spare space lets move the box until it fits
    
                            # How many times does the source fit into the target x/y
                            blockTestXUnit = targetIsland[4]/sourceIsland[4]
                            blockTestYUnit = targetIsland[5]/sourceIsland[5]
    
                            boxLeft = 0
    
    
                            # Distllllance we can move between whilst staying inside the targets bounds.
                            testWidth = targetIsland[4] - sourceIsland[4]
                            testHeight = targetIsland[5] - sourceIsland[5]
    
                            # Increment we move each test. x/y
                            xIncrement = (testWidth / (blockTestXUnit * ((USER_STEP_QUALITY/50)+0.1)))
                            yIncrement = (testHeight / (blockTestYUnit * ((USER_STEP_QUALITY/50)+0.1)))
    
                            # Make sure were not moving less then a 3rg of our width/height
                            if xIncrement<sourceIsland[4]/3:
                                xIncrement= sourceIsland[4]
                            if yIncrement<sourceIsland[5]/3:
                                yIncrement= sourceIsland[5]
    
    
                            boxLeft = 0 # Start 1 back so we can jump into the loop.
                            boxBottom= 0 #-yIncrement
    
                            ##testcount= 0
    
                            while boxBottom <= testHeight:
                                # Should we use this? - not needed for now.
                                #if Window.GetKeyQualifiers() & ctrl:
                                #	BREAK= True
                                #	break
    
                                ##testcount+=1
                                #print 'Testing intersect'
    
    Campbell Barton's avatar
    Campbell Barton committed
                                Intersect = islandIntersectUvIsland(sourceIsland, targetIsland, Vector((boxLeft, boxBottom)))
    
                                #print 'Done', Intersect
                                if Intersect == 1:  # Line intersect, dont bother with this any more
                                    pass
    
                                if Intersect == 2:  # Source inside target
                                    '''
                                    We have an intersection, if we are inside the target
                                    then move us 1 whole width accross,
                                    Its possible this is a bad idea since 2 skinny Angular faces
                                    could join without 1 whole move, but its a lot more optimal to speed this up
    
                                    since we have already tested for it.
    
    
                                    It gives about 10% speedup with minimal errors.
                                    '''
                                    #print 'ass'
                                    # Move the test allong its width + SMALL_NUM
                                    #boxLeft += sourceIsland[4] + SMALL_NUM
                                    boxLeft += sourceIsland[4]
                                elif Intersect == 0: # No intersection?? Place it.
                                    # Progress
                                    removedCount +=1
    
    #XXX								Window.DrawProgressBar(0.0, 'Merged: %i islands, Ctrl to finish early.' % removedCount)
    
    
                                    # Move faces into new island and offset
                                    targetIsland[0].extend(sourceIsland[0])
    
    Campbell Barton's avatar
    Campbell Barton committed
                                    offset= Vector((boxLeft, boxBottom))
    
    
                                    for f in sourceIsland[0]:
                                        for uv in f.uv:
                                            uv+= offset
    
                                    sourceIsland[0][:] = [] # Empty
    
    
                                    # Move edge loop into new and offset.
                                    # targetIsland[6].extend(sourceIsland[6])
                                    #while sourceIsland[6]:
                                    targetIsland[6].extend( [ (\
                                         (e[0]+offset, e[1]+offset, e[2])\
                                    ) for e in sourceIsland[6] ] )
    
                                    sourceIsland[6][:] = [] # Empty
    
                                    # Sort by edge length, reverse so biggest are first.
    
                                    try:	 targetIsland[6].sort(key = lambda A: A[2])
                                    except:	targetIsland[6].sort(lambda B,A: cmp(A[2], B[2] ))
    
    
                                    targetIsland[7].extend(sourceIsland[7])
    
    Campbell Barton's avatar
    Campbell Barton committed
                                    offset= Vector((boxLeft, boxBottom, 0.0))
    
                                    for p in sourceIsland[7]:
                                        p+= offset
    
                                    sourceIsland[7][:] = []
    
    
                                    # Decrement the efficiency
                                    targetIsland[1]+=sourceIsland[1] # Increment totFaceArea
                                    targetIsland[2]-=sourceIsland[1] # Decrement efficiency
                                    # IF we ever used these again, should set to 0, eg
                                    sourceIsland[2] = 0 # No area if anyone wants to know
    
                                    break
    
    
                                # INCREMENR NEXT LOCATION
                                if boxLeft > testWidth:
                                    boxBottom += yIncrement
                                    boxLeft = 0.0
                                else:
                                    boxLeft += xIncrement
                            ##print testcount
    
                    efficIslandIdx+=1
            areaIslandIdx+=1
    
        # Remove empty islands
        i = len(islandList)
        while i:
            i-=1
            if not islandList[i]:
                del islandList[i] # Can increment islands removed here.
    
    
    # Takes groups of faces. assumes face groups are UV groups.
    def getUvIslands(faceGroups, me):
    
    
        # Get seams so we dont cross over seams
        edge_seams = {} # shoudl be a set
        for ed in me.edges:
    
                edge_seams[ed.key] = None # dummy var- use sets!
        # Done finding seams
    
    
        islandList = []
    
    
    #XXX	Window.DrawProgressBar(0.0, 'Splitting %d projection groups into UV islands:' % len(faceGroups))
    
        #print '\tSplitting %d projection groups into UV islands:' % len(faceGroups),
        # Find grouped faces
    
        faceGroupIdx = len(faceGroups)
    
        while faceGroupIdx:
            faceGroupIdx-=1
            faces = faceGroups[faceGroupIdx]
    
            if not faces:
                continue
    
            # Build edge dict
            edge_users = {}
    
            for i, f in enumerate(faces):
                for ed_key in f.edge_keys:
                    if ed_key in edge_seams: # DELIMIT SEAMS! ;)
                        edge_users[ed_key] = [] # so as not to raise an error
                    else:
                        try:		edge_users[ed_key].append(i)
                        except:		edge_users[ed_key] = [i]
    
            # Modes
            # 0 - face not yet touched.
            # 1 - added to island list, and need to search
            # 2 - touched and searched - dont touch again.
            face_modes = [0] * len(faces) # initialize zero - untested.
    
            face_modes[0] = 1 # start the search with face 1
    
            newIsland = []
    
            newIsland.append(faces[0])
    
    
            ok = True
            while ok:
    
                ok = True
                while ok:
                    ok= False
                    for i in range(len(faces)):
                        if face_modes[i] == 1: # search
                            for ed_key in faces[i].edge_keys:
                                for ii in edge_users[ed_key]:
                                    if i != ii and face_modes[ii] == 0:
                                        face_modes[ii] = ok = 1 # mark as searched
                                        newIsland.append(faces[ii])
    
                            # mark as searched, dont look again.
                            face_modes[i] = 2
    
                islandList.append(newIsland)
    
                ok = False
                for i in range(len(faces)):
                    if face_modes[i] == 0:
                        newIsland = []
                        newIsland.append(faces[i])
    
                        face_modes[i] = ok = 1
                        break
                # if not ok will stop looping
    
    
    #XXX	Window.DrawProgressBar(0.1, 'Optimizing Rotation for %i UV Islands' % len(islandList))
    
    
        for island in islandList:
            optiRotateUvIsland(island)
    
        return islandList
    
    
    
    def packIslands(islandList):
    
    #XXX		Window.DrawProgressBar(0.1, 'Merging Islands (Ctrl: skip merge)...')
    
            mergeUvIslands(islandList) # Modify in place
    
    
        # Now we have UV islands, we need to pack them.
    
        # Make a synchronised list with the islands
        # so we can box pak the islands.
        packBoxes = []
    
        # Keep a list of X/Y offset so we can save time by writing the
        # uv's and packed data in one pass.
        islandOffsetList = []
    
        islandIdx = 0
    
        while islandIdx < len(islandList):
            minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx])
    
            w, h = maxx-minx, maxy-miny
    
            if USER_ISLAND_MARGIN:
                minx -= USER_ISLAND_MARGIN# *w
                miny -= USER_ISLAND_MARGIN# *h
                maxx += USER_ISLAND_MARGIN# *w
                maxy += USER_ISLAND_MARGIN# *h
    
                # recalc width and height
                w, h = maxx-minx, maxy-miny
    
            if w < 0.00001 or h < 0.00001:
                del islandList[islandIdx]
                islandIdx -=1
                continue
    
            '''Save the offset to be applied later,
            we could apply to the UVs now and allign them to the bottom left hand area
            of the UV coords like the box packer imagines they are
            but, its quicker just to remember their offset and
            apply the packing and offset in 1 pass '''
            islandOffsetList.append((minx, miny))
    
            # Add to boxList. use the island idx for the BOX id.
            packBoxes.append([0, 0, w, h])
            islandIdx+=1
    
        # Now we have a list of boxes to pack that syncs
        # with the islands.
    
        #print '\tPacking UV Islands...'
    
    #XXX	Window.DrawProgressBar(0.7, 'Packing %i UV Islands...' % len(packBoxes) )
    
    Campbell Barton's avatar
    Campbell Barton committed
        packWidth, packHeight = geometry.BoxPack2D(packBoxes)
    
    
        # print 'Box Packing Time:', time.time() - time1
    
        #if len(pa	ckedLs) != len(islandList):
        #	raise "Error packed boxes differes from original length"
    
        #print '\tWriting Packed Data to faces'
    
    #XXX	Window.DrawProgressBar(0.8, 'Writing Packed Data to faces')
    
    
        # Sort by ID, so there in sync again
        islandIdx = len(islandList)
        # Having these here avoids devide by 0
        if islandIdx:
    
            if USER_STRETCH_ASPECT:
                # Maximize to uv area?? Will write a normalize function.
                xfactor = 1.0 / packWidth
                yfactor = 1.0 / packHeight
            else:
                # Keep proportions.
                xfactor = yfactor = 1.0 / max(packWidth, packHeight)
    
        while islandIdx:
            islandIdx -=1
            # Write the packed values to the UV's
    
            xoffset = packBoxes[islandIdx][0] - islandOffsetList[islandIdx][0]
            yoffset = packBoxes[islandIdx][1] - islandOffsetList[islandIdx][1]
    
            for f in islandList[islandIdx]: # Offsetting the UV's so they fit in there packed box
                for uv in f.uv:
                    uv.x= (uv.x+xoffset) * xfactor
                    uv.y= (uv.y+yoffset) * yfactor
    
    
    
    Campbell Barton's avatar
    Campbell Barton committed
        up = Vector((0.0, 0.0, 1.0))
    
    Campbell Barton's avatar
    Campbell Barton committed
            up = Vector((0.0, 1.0, 0.0))
    
    
        a1 = a3.cross(up).normalize()
        a2 = a3.cross(a1)
        return Matrix([a1[0], a1[1], a1[2]], [a2[0], a2[1], a2[2]], [a3[0], a3[1], a3[2]])
    
    
    
    class thickface(object):
    
        __slost__= 'v', 'uv', 'no', 'area', 'edge_keys'
        def __init__(self, face, uvface, mesh_verts):
    
            self.v = [mesh_verts[i] for i in face.vertices]
    
            if len(self.v)==4:
                self.uv = uvface.uv1, uvface.uv2, uvface.uv3, uvface.uv4
            else:
                self.uv = uvface.uv1, uvface.uv2, uvface.uv3
    
            self.no = face.normal
            self.area = face.area
            self.edge_keys = face.edge_keys
    
    def main(context, island_margin, projection_limit):
    
        global USER_FILL_HOLES
        global USER_FILL_HOLES_QUALITY
        global USER_STRETCH_ASPECT
        global USER_ISLAND_MARGIN
    
    
    #XXX objects= bpy.data.scenes.active.objects
    
        objects = context.selected_editable_objects
    
    
        # we can will tag them later.
        obList =  [ob for ob in objects if ob.type == 'MESH']
    
        # Face select object may not be selected.
    
        if ob and (not ob.select) and ob.type == 'MESH':
    
            # Add to the list
            obList =[ob]
        del objects
    
        if not obList:
            raise('error, no selected mesh objects')
    
        # Create the variables.
        USER_PROJECTION_LIMIT = projection_limit
        USER_ONLY_SELECTED_FACES = (1)
        USER_SHARE_SPACE = (1) # Only for hole filling.
        USER_STRETCH_ASPECT = (1) # Only for hole filling.
        USER_ISLAND_MARGIN = island_margin # Only for hole filling.
        USER_FILL_HOLES = (0)
        USER_FILL_HOLES_QUALITY = (50) # Only for hole filling.
        USER_VIEW_INIT = (0) # Only for hole filling.
        USER_AREA_WEIGHT = (1) # Only for hole filling.
    
        # Reuse variable
        if len(obList) == 1:
            ob = "Unwrap %i Selected Mesh"
        else:
            ob = "Unwrap %i Selected Meshes"
    
        # HACK, loop until mouse is lifted.
        '''
        while Window.GetMouseButtons() != 0:
            time.sleep(10)
        '''
    
    
    #XXX	if not Draw.PupBlock(ob % len(obList), pup_block):
    #XXX		return
    #XXX	del ob
    
    
        # Convert from being button types
    
        USER_PROJECTION_LIMIT_CONVERTED = cos(USER_PROJECTION_LIMIT * DEG_TO_RAD)
        USER_PROJECTION_LIMIT_HALF_CONVERTED = cos((USER_PROJECTION_LIMIT/2) * DEG_TO_RAD)
    
    
        # Toggle Edit mode
        is_editmode = (context.active_object.mode == 'EDIT')
        if is_editmode:
            bpy.ops.object.mode_set(mode='OBJECT')
        # Assume face select mode! an annoying hack to toggle face select mode because Mesh dosent like faceSelectMode.
    
        if USER_SHARE_SPACE:
            # Sort by data name so we get consistant results
            obList.sort(key = lambda ob: ob.data.name)
            collected_islandList= []
    
    
    
        time1 = time.time()
    
        # Tag as False se we dont operate on teh same mesh twice.
    #XXX	bpy.data.meshes.tag = False
        for me in bpy.data.meshes:
            me.tag = False
    
    
        for ob in obList:
            me = ob.data
    
            if me.tag or me.library:
                continue
    
            # Tag as used
            me.tag = True
    
    
            if not me.uv_textures: # Mesh has no UV Coords, dont bother.
                me.uv_textures.new()
    
            uv_layer = me.uv_textures.active.data
    
            me_verts = list(me.vertices)
    
                meshFaces = [thickface(f, uv_layer[i], me_verts) for i, f in enumerate(me.faces) if f.select]
    
            #else:
            #	meshFaces = map(thickface, me.faces)
    
            if not meshFaces:
                continue
    
    
    #XXX		Window.DrawProgressBar(0.1, 'SmartProj UV Unwrapper, mapping "%s", %i faces.' % (me.name, len(meshFaces)))
    
    
            # =======
            # Generate a projection list from face normals, this is ment to be smart :)
    
            # make a list of face props that are in sync with meshFaces
            # Make a Face List that is sorted by area.
            # meshFaces = []
    
            # meshFaces.sort( lambda a, b: cmp(b.area , a.area) ) # Biggest first.
            meshFaces.sort( key = lambda a: -a.area )
    
            # remove all zero area faces
            while meshFaces and meshFaces[-1].area <= SMALL_NUM:
                # Set their UV's to 0,0
                for uv in meshFaces[-1].uv:
                    uv.zero()
                meshFaces.pop()
    
            # Smallest first is slightly more efficient, but if the user cancels early then its better we work on the larger data.
    
            # Generate Projection Vecs
            # 0d is   1.0
            # 180 IS -0.59846
    
    
            # Initialize projectVecs
            if USER_VIEW_INIT:
                # Generate Projection
    
    Campbell Barton's avatar
    Campbell Barton committed
                projectVecs = [Vector(Window.GetViewVector()) * ob.matrix_world.copy().invert().rotation_part()] # We add to this allong the way
    
            else:
                projectVecs = []
    
            newProjectVec = meshFaces[0].no
            newProjectMeshFaces = []	# Popping stuffs it up.
    
    
            # Predent that the most unique angke is ages away to start the loop off
            mostUniqueAngle = -1.0
    
            # This is popped
            tempMeshFaces = meshFaces[:]
    
    
    
            # This while only gathers projection vecs, faces are assigned later on.
            while 1:
                # If theres none there then start with the largest face
    
                # add all the faces that are close.
                for fIdx in range(len(tempMeshFaces)-1, -1, -1):
                    # Use half the angle limit so we dont overweight faces towards this
                    # normal and hog all the faces.
                    if newProjectVec.dot(tempMeshFaces[fIdx].no) > USER_PROJECTION_LIMIT_HALF_CONVERTED:
                        newProjectMeshFaces.append(tempMeshFaces.pop(fIdx))
    
                # Add the average of all these faces normals as a projectionVec
    
                averageVec = Vector((0.0, 0.0, 0.0))
    
                if USER_AREA_WEIGHT:
                    for fprop in newProjectMeshFaces:
                        averageVec += (fprop.no * fprop.area)
                else:
                    for fprop in newProjectMeshFaces:
                        averageVec += fprop.no
    
                if averageVec.x != 0 or averageVec.y != 0 or averageVec.z != 0: # Avoid NAN
                    projectVecs.append(averageVec.normalize())
    
    
                # Get the next vec!
                # Pick the face thats most different to all existing angles :)
                mostUniqueAngle = 1.0 # 1.0 is 0d. no difference.
                mostUniqueIndex = 0 # dummy
    
                for fIdx in range(len(tempMeshFaces)-1, -1, -1):
                    angleDifference = -1.0 # 180d difference.
    
                    # Get the closest vec angle we are to.
                    for p in projectVecs:
                        temp_angle_diff= p.dot(tempMeshFaces[fIdx].no)
    
                        if angleDifference < temp_angle_diff:
                            angleDifference= temp_angle_diff
    
                    if angleDifference < mostUniqueAngle:
                        # We have a new most different angle
                        mostUniqueIndex = fIdx
                        mostUniqueAngle = angleDifference
    
                if mostUniqueAngle < USER_PROJECTION_LIMIT_CONVERTED:
                    #print 'adding', mostUniqueAngle, USER_PROJECTION_LIMIT, len(newProjectMeshFaces)
                    # Now weight the vector to all its faces, will give a more direct projection
                    # if the face its self was not representive of the normal from surrounding faces.