Skip to content
Snippets Groups Projects
Bullet-C-API.cpp 15.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
    Bullet Continuous Collision Detection and Physics Library
    Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
    
    This software is provided 'as-is', without any express or implied warranty.
    In no event will the authors be held liable for any damages arising from the use of this software.
    Permission is granted to anyone to use this software for any purpose, 
    including commercial applications, and to alter it and redistribute it freely, 
    subject to the following restrictions:
    
    1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
    2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
    3. This notice may not be removed or altered from any source distribution.
    */
    
    /*
    	Draft high-level generic physics C-API. For low-level access, use the physics SDK native API's.
    	Work in progress, functionality will be added on demand.
    
    	If possible, use the richer Bullet C++ API, by including <src/btBulletDynamicsCommon.h>
    */
    
    #include "Bullet-C-Api.h"
    #include "btBulletDynamicsCommon.h"
    #include "LinearMath/btAlignedAllocator.h"
    
    #include "LinearMath/btConvexHullComputer.h"
    
    #include "LinearMath/btVector3.h"
    #include "LinearMath/btScalar.h"	
    #include "LinearMath/btMatrix3x3.h"
    #include "LinearMath/btTransform.h"
    #include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
    #include "BulletCollision/CollisionShapes/btTriangleShape.h"
    
    #include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
    #include "BulletCollision/NarrowPhaseCollision/btPointCollector.h"
    #include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
    #include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
    #include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
    
    Erwin Coumans's avatar
     
    Erwin Coumans committed
    #include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
    
    #include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h"
    #include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
    #include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
    #include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
    
    /*
    	Create and Delete a Physics SDK	
    */
    
    struct	btPhysicsSdk
    {
    
    //	btDispatcher*				m_dispatcher;
    //	btOverlappingPairCache*		m_pairCache;
    //	btConstraintSolver*			m_constraintSolver
    
    	btVector3	m_worldAabbMin;
    	btVector3	m_worldAabbMax;
    
    
    	//todo: version, hardware/optimization settings etc?
    	btPhysicsSdk()
    		:m_worldAabbMin(-1000,-1000,-1000),
    		m_worldAabbMax(1000,1000,1000)
    	{
    
    	}
    
    };
    
    plPhysicsSdkHandle	plNewBulletSdk()
    {
    	void* mem = btAlignedAlloc(sizeof(btPhysicsSdk),16);
    	return (plPhysicsSdkHandle)new (mem)btPhysicsSdk;
    }
    
    void		plDeletePhysicsSdk(plPhysicsSdkHandle	physicsSdk)
    {
    	btPhysicsSdk* phys = reinterpret_cast<btPhysicsSdk*>(physicsSdk);
    	btAlignedFree(phys);	
    }
    
    
    /* Dynamics World */
    plDynamicsWorldHandle plCreateDynamicsWorld(plPhysicsSdkHandle physicsSdkHandle)
    {
    	btPhysicsSdk* physicsSdk = reinterpret_cast<btPhysicsSdk*>(physicsSdkHandle);
    	void* mem = btAlignedAlloc(sizeof(btDefaultCollisionConfiguration),16);
    	btDefaultCollisionConfiguration* collisionConfiguration = new (mem)btDefaultCollisionConfiguration();
    	mem = btAlignedAlloc(sizeof(btCollisionDispatcher),16);
    	btDispatcher*				dispatcher = new (mem)btCollisionDispatcher(collisionConfiguration);
    	mem = btAlignedAlloc(sizeof(btAxisSweep3),16);
    	btBroadphaseInterface*		pairCache = new (mem)btAxisSweep3(physicsSdk->m_worldAabbMin,physicsSdk->m_worldAabbMax);
    	mem = btAlignedAlloc(sizeof(btSequentialImpulseConstraintSolver),16);
    	btConstraintSolver*			constraintSolver = new(mem) btSequentialImpulseConstraintSolver();
    
    	mem = btAlignedAlloc(sizeof(btDiscreteDynamicsWorld),16);
    	return (plDynamicsWorldHandle) new (mem)btDiscreteDynamicsWorld(dispatcher,pairCache,constraintSolver,collisionConfiguration);
    }
    void           plDeleteDynamicsWorld(plDynamicsWorldHandle world)
    {
    	//todo: also clean up the other allocations, axisSweep, pairCache,dispatcher,constraintSolver,collisionConfiguration
    	btDynamicsWorld* dynamicsWorld = reinterpret_cast< btDynamicsWorld* >(world);
    	btAlignedFree(dynamicsWorld);
    }
    
    void	plStepSimulation(plDynamicsWorldHandle world,	plReal	timeStep)
    {
    	btDynamicsWorld* dynamicsWorld = reinterpret_cast< btDynamicsWorld* >(world);
    
    Erwin Coumans's avatar
     
    Erwin Coumans committed
    	btAssert(dynamicsWorld);
    
    	dynamicsWorld->stepSimulation(timeStep);
    }
    
    void plAddRigidBody(plDynamicsWorldHandle world, plRigidBodyHandle object)
    {
    	btDynamicsWorld* dynamicsWorld = reinterpret_cast< btDynamicsWorld* >(world);
    
    Erwin Coumans's avatar
     
    Erwin Coumans committed
    	btAssert(dynamicsWorld);
    
    	btRigidBody* body = reinterpret_cast< btRigidBody* >(object);
    
    Erwin Coumans's avatar
     
    Erwin Coumans committed
    	btAssert(body);
    
    
    	dynamicsWorld->addRigidBody(body);
    }
    
    void plRemoveRigidBody(plDynamicsWorldHandle world, plRigidBodyHandle object)
    {
    	btDynamicsWorld* dynamicsWorld = reinterpret_cast< btDynamicsWorld* >(world);
    
    Erwin Coumans's avatar
     
    Erwin Coumans committed
    	btAssert(dynamicsWorld);
    
    	btRigidBody* body = reinterpret_cast< btRigidBody* >(object);
    
    Erwin Coumans's avatar
     
    Erwin Coumans committed
    	btAssert(body);
    
    
    	dynamicsWorld->removeRigidBody(body);
    }
    
    /* Rigid Body  */
    
    plRigidBodyHandle plCreateRigidBody(	void* user_data,  float mass, plCollisionShapeHandle cshape )
    {
    	btTransform trans;
    	trans.setIdentity();
    	btVector3 localInertia(0,0,0);
    	btCollisionShape* shape = reinterpret_cast<btCollisionShape*>( cshape);
    
    Erwin Coumans's avatar
     
    Erwin Coumans committed
    	btAssert(shape);
    
    		shape->calculateLocalInertia(mass,localInertia);
    
    	void* mem = btAlignedAlloc(sizeof(btRigidBody),16);
    	btRigidBody::btRigidBodyConstructionInfo rbci(mass, 0,shape,localInertia);
    	btRigidBody* body = new (mem)btRigidBody(rbci);
    	body->setWorldTransform(trans);
    	body->setUserPointer(user_data);
    	return (plRigidBodyHandle) body;
    
    
    void plDeleteRigidBody(plRigidBodyHandle cbody)
    {
    	btRigidBody* body = reinterpret_cast< btRigidBody* >(cbody);
    
    Erwin Coumans's avatar
     
    Erwin Coumans committed
    	btAssert(body);
    
    	btAlignedFree( body);
    }
    
    
    /* Collision Shape definition */
    
    plCollisionShapeHandle plNewSphereShape(plReal radius)
    {
    	void* mem = btAlignedAlloc(sizeof(btSphereShape),16);
    	return (plCollisionShapeHandle) new (mem)btSphereShape(radius);
    	
    }
    	
    plCollisionShapeHandle plNewBoxShape(plReal x, plReal y, plReal z)
    {
    	void* mem = btAlignedAlloc(sizeof(btBoxShape),16);
    	return (plCollisionShapeHandle) new (mem)btBoxShape(btVector3(x,y,z));
    }
    
    plCollisionShapeHandle plNewCapsuleShape(plReal radius, plReal height)
    {
    	//capsule is convex hull of 2 spheres, so use btMultiSphereShape
    
    	const int numSpheres = 2;
    	btVector3 positions[numSpheres] = {btVector3(0,height,0),btVector3(0,-height,0)};
    	btScalar radi[numSpheres] = {radius,radius};
    	void* mem = btAlignedAlloc(sizeof(btMultiSphereShape),16);
    
    	return (plCollisionShapeHandle) new (mem)btMultiSphereShape(positions,radi,numSpheres);
    
    }
    plCollisionShapeHandle plNewConeShape(plReal radius, plReal height)
    {
    	void* mem = btAlignedAlloc(sizeof(btConeShape),16);
    	return (plCollisionShapeHandle) new (mem)btConeShape(radius,height);
    }
    
    plCollisionShapeHandle plNewCylinderShape(plReal radius, plReal height)
    {
    	void* mem = btAlignedAlloc(sizeof(btCylinderShape),16);
    	return (plCollisionShapeHandle) new (mem)btCylinderShape(btVector3(radius,height,radius));
    }
    
    /* Convex Meshes */
    plCollisionShapeHandle plNewConvexHullShape()
    {
    	void* mem = btAlignedAlloc(sizeof(btConvexHullShape),16);
    	return (plCollisionShapeHandle) new (mem)btConvexHullShape();
    }
    
    
    /* Concave static triangle meshes */
    plMeshInterfaceHandle		   plNewMeshInterface()
    {
    	return 0;
    }
    
    plCollisionShapeHandle plNewCompoundShape()
    {
    	void* mem = btAlignedAlloc(sizeof(btCompoundShape),16);
    	return (plCollisionShapeHandle) new (mem)btCompoundShape();
    }
    
    void	plAddChildShape(plCollisionShapeHandle compoundShapeHandle,plCollisionShapeHandle childShapeHandle, plVector3 childPos,plQuaternion childOrn)
    {
    	btCollisionShape* colShape = reinterpret_cast<btCollisionShape*>(compoundShapeHandle);
    	btAssert(colShape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE);
    	btCompoundShape* compoundShape = reinterpret_cast<btCompoundShape*>(colShape);
    	btCollisionShape* childShape = reinterpret_cast<btCollisionShape*>(childShapeHandle);
    	btTransform	localTrans;
    	localTrans.setIdentity();
    	localTrans.setOrigin(btVector3(childPos[0],childPos[1],childPos[2]));
    	localTrans.setRotation(btQuaternion(childOrn[0],childOrn[1],childOrn[2],childOrn[3]));
    	compoundShape->addChildShape(localTrans,childShape);
    }
    
    void plSetEuler(plReal yaw,plReal pitch,plReal roll, plQuaternion orient)
    {
    	btQuaternion orn;
    	orn.setEuler(yaw,pitch,roll);
    	orient[0] = orn.getX();
    	orient[1] = orn.getY();
    	orient[2] = orn.getZ();
    	orient[3] = orn.getW();
    
    }
    
    
    //	extern  void		plAddTriangle(plMeshInterfaceHandle meshHandle, plVector3 v0,plVector3 v1,plVector3 v2);
    //	extern  plCollisionShapeHandle plNewStaticTriangleMeshShape(plMeshInterfaceHandle);
    
    
    void		plAddVertex(plCollisionShapeHandle cshape, plReal x,plReal y,plReal z)
    {
    	btCollisionShape* colShape = reinterpret_cast<btCollisionShape*>( cshape);
    	(void)colShape;
    	btAssert(colShape->getShapeType()==CONVEX_HULL_SHAPE_PROXYTYPE);
    	btConvexHullShape* convexHullShape = reinterpret_cast<btConvexHullShape*>( cshape);
    
    Erwin Coumans's avatar
     
    Erwin Coumans committed
    	convexHullShape->addPoint(btVector3(x,y,z));
    
    
    }
    
    void plDeleteShape(plCollisionShapeHandle cshape)
    {
    	btCollisionShape* shape = reinterpret_cast<btCollisionShape*>( cshape);
    
    Erwin Coumans's avatar
     
    Erwin Coumans committed
    	btAssert(shape);
    
    	btAlignedFree(shape);
    }
    void plSetScaling(plCollisionShapeHandle cshape, plVector3 cscaling)
    {
    	btCollisionShape* shape = reinterpret_cast<btCollisionShape*>( cshape);
    
    Erwin Coumans's avatar
     
    Erwin Coumans committed
    	btAssert(shape);
    
    	btVector3 scaling(cscaling[0],cscaling[1],cscaling[2]);
    	shape->setLocalScaling(scaling);	
    }
    
    
    
    void plSetPosition(plRigidBodyHandle object, const plVector3 position)
    {
    	btRigidBody* body = reinterpret_cast< btRigidBody* >(object);
    	btAssert(body);
    	btVector3 pos(position[0],position[1],position[2]);
    	btTransform worldTrans = body->getWorldTransform();
    	worldTrans.setOrigin(pos);
    	body->setWorldTransform(worldTrans);
    }
    
    void plSetOrientation(plRigidBodyHandle object, const plQuaternion orientation)
    {
    	btRigidBody* body = reinterpret_cast< btRigidBody* >(object);
    	btAssert(body);
    	btQuaternion orn(orientation[0],orientation[1],orientation[2],orientation[3]);
    	btTransform worldTrans = body->getWorldTransform();
    	worldTrans.setRotation(orn);
    	body->setWorldTransform(worldTrans);
    }
    
    
    void	plSetOpenGLMatrix(plRigidBodyHandle object, plReal* matrix)
    {
    	btRigidBody* body = reinterpret_cast< btRigidBody* >(object);
    	btAssert(body);
    	btTransform& worldTrans = body->getWorldTransform();
    	worldTrans.setFromOpenGLMatrix(matrix);
    }
    
    
    void	plGetOpenGLMatrix(plRigidBodyHandle object, plReal* matrix)
    {
    	btRigidBody* body = reinterpret_cast< btRigidBody* >(object);
    	btAssert(body);
    	body->getWorldTransform().getOpenGLMatrix(matrix);
    
    }
    
    void	plGetPosition(plRigidBodyHandle object,plVector3 position)
    {
    	btRigidBody* body = reinterpret_cast< btRigidBody* >(object);
    	btAssert(body);
    	const btVector3& pos = body->getWorldTransform().getOrigin();
    	position[0] = pos.getX();
    	position[1] = pos.getY();
    	position[2] = pos.getZ();
    }
    
    void plGetOrientation(plRigidBodyHandle object,plQuaternion orientation)
    {
    	btRigidBody* body = reinterpret_cast< btRigidBody* >(object);
    	btAssert(body);
    	const btQuaternion& orn = body->getWorldTransform().getRotation();
    	orientation[0] = orn.getX();
    	orientation[1] = orn.getY();
    	orientation[2] = orn.getZ();
    	orientation[3] = orn.getW();
    }
    
    
    
    //plRigidBodyHandle plRayCast(plDynamicsWorldHandle world, const plVector3 rayStart, const plVector3 rayEnd, plVector3 hitpoint, plVector3 normal);
    
    //	extern  plRigidBodyHandle plObjectCast(plDynamicsWorldHandle world, const plVector3 rayStart, const plVector3 rayEnd, plVector3 hitpoint, plVector3 normal);
    
    double plNearestPoints(float p1[3], float p2[3], float p3[3], float q1[3], float q2[3], float q3[3], float *pa, float *pb, float normal[3])
    {
    
    	btVector3 vp(p1[0], p1[1], p1[2]);
    	btTriangleShape trishapeA(vp, 
    				  btVector3(p2[0], p2[1], p2[2]), 
    				  btVector3(p3[0], p3[1], p3[2]));
    
    	trishapeA.setMargin(0.000001f);
    
    	btVector3 vq(q1[0], q1[1], q1[2]);
    	btTriangleShape trishapeB(vq, 
    				  btVector3(q2[0], q2[1], q2[2]), 
    				  btVector3(q3[0], q3[1], q3[2]));
    
    	trishapeB.setMargin(0.000001f);
    	
    	// btVoronoiSimplexSolver sGjkSimplexSolver;
    	// btGjkEpaPenetrationDepthSolver penSolverPtr;	
    	
    
    	/*static*/ btSimplexSolverInterface sGjkSimplexSolver;
    
    	/*static*/ btGjkEpaPenetrationDepthSolver Solver0;
    	/*static*/ btMinkowskiPenetrationDepthSolver Solver1;
    
    		
    	btConvexPenetrationDepthSolver* Solver = NULL;
    	
    	Solver = &Solver1;	
    		
    	btGjkPairDetector convexConvex(&trishapeA ,&trishapeB,&sGjkSimplexSolver,Solver);
    	
    	convexConvex.m_catchDegeneracies = 1;
    	
    	// btGjkPairDetector convexConvex(&trishapeA ,&trishapeB,&sGjkSimplexSolver,0);
    	
    	btPointCollector gjkOutput;
    	btGjkPairDetector::ClosestPointInput input;
    	
    
    	btTransform tr;
    	tr.setIdentity();
    	
    	input.m_transformA = tr;
    	input.m_transformB = tr;
    	
    	convexConvex.getClosestPoints(input, gjkOutput, 0);
    	
    	
    	if (gjkOutput.m_hasResult)
    	{
    		
    		pb[0] = pa[0] = gjkOutput.m_pointInWorld[0];
    		pb[1] = pa[1] = gjkOutput.m_pointInWorld[1];
    		pb[2] = pa[2] = gjkOutput.m_pointInWorld[2];
    
    		pb[0]+= gjkOutput.m_normalOnBInWorld[0] * gjkOutput.m_distance;
    		pb[1]+= gjkOutput.m_normalOnBInWorld[1] * gjkOutput.m_distance;
    		pb[2]+= gjkOutput.m_normalOnBInWorld[2] * gjkOutput.m_distance;
    		
    		normal[0] = gjkOutput.m_normalOnBInWorld[0];
    		normal[1] = gjkOutput.m_normalOnBInWorld[1];
    		normal[2] = gjkOutput.m_normalOnBInWorld[2];
    
    		return gjkOutput.m_distance;
    	}
    	return -1.0f;	
    }
    
    // Convex hull
    plConvexHull plConvexHullCompute(float (*coords)[3], int count)
    {
    	btConvexHullComputer *computer = new btConvexHullComputer;
    	computer->compute(reinterpret_cast< float* >(coords),
    					  sizeof(*coords), count, 0, 0);
    	return reinterpret_cast<plConvexHull>(computer);
    }
    
    int plConvexHullNumVertices(plConvexHull hull)
    {
    	btConvexHullComputer *computer(reinterpret_cast< btConvexHullComputer* >(hull));
    	return computer->vertices.size();
    }
    
    int plConvexHullNumFaces(plConvexHull hull)
    {
    	btConvexHullComputer *computer(reinterpret_cast< btConvexHullComputer* >(hull));
    	return computer->faces.size();
    }
    
    void plConvexHullGetVertex(plConvexHull hull, int n, float coords[3],
    						   int *original_index)
    {
    	btConvexHullComputer *computer(reinterpret_cast< btConvexHullComputer* >(hull));
    	const btVector3 &v(computer->vertices[n]);
    	coords[0] = v[0];
    	coords[1] = v[1];
    	coords[2] = v[2];
    	(*original_index) = computer->original_vertex_index[n];
    }
    
    int plConvexHullGetFaceSize(plConvexHull hull, int n)
    {
    	btConvexHullComputer *computer(reinterpret_cast< btConvexHullComputer* >(hull));
    	const btConvexHullComputer::Edge *e_orig, *e;
    	int count;
    
    	for (e_orig = &computer->edges[computer->faces[n]], e = e_orig, count = 0;
    		 count == 0 || e != e_orig;
    		 e = e->getNextEdgeOfFace(), count++);
    	return count;
    }
    
    void plConvexHullGetFaceVertices(plConvexHull hull, int n, int *vertices)
    {
    	btConvexHullComputer *computer(reinterpret_cast< btConvexHullComputer* >(hull));
    	const btConvexHullComputer::Edge *e_orig, *e;
    	int count;
    
    	for (e_orig = &computer->edges[computer->faces[n]], e = e_orig, count = 0;
    		 count == 0 || e != e_orig;
    		 e = e->getNextEdgeOfFace(), count++)
    	{
    		vertices[count] = e->getTargetVertex();
    	}
    }