Skip to content
Snippets Groups Projects
r.md 11.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • David Hrbáč's avatar
    David Hrbáč committed
    # R
    
    ## Introduction
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    David Hrbáč's avatar
    David Hrbáč committed
    The R is a language and environment for statistical computing and graphics.  R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, ...) and graphical techniques, and is highly extensible.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    One of R's strengths is the ease with which well-designed publication-quality plots can be produced, including mathematical symbols and formulae where needed. Great care has been taken over the defaults for the minor design choices in graphics, but the user retains full control.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    Another convenience is the ease with which the C code or third party libraries may be integrated within R.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    Extensive support for parallel computing is available within R.
    
    
    Read more on <http://www.r-project.org/>, <http://cran.r-project.org/doc/manuals/r-release/R-lang.html>
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    David Hrbáč's avatar
    David Hrbáč committed
    ## Modules
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    The R version 3.0.1 is available on Anselm, along with GUI interface Rstudio
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    David Hrbáč's avatar
    David Hrbáč committed
    | Application | Version      | module  |
    | ----------- | ------------ | ------- |
    | **R**       | R 3.0.1      | R       |
    | **Rstudio** | Rstudio 0.97 | Rstudio |
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        $ module load R
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    David Hrbáč's avatar
    David Hrbáč committed
    ## Execution
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    The R on Anselm is linked to highly optimized MKL mathematical library. This provides threaded parallelization to many R kernels, notably the linear algebra subroutines. The R runs these heavy calculation kernels without any penalty. By default, the R would parallelize to 16 threads. You may control the threads by setting the OMP_NUM_THREADS environment variable.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    ### Interactive execution
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    To run R interactively, using Rstudio GUI, log in with ssh -X parameter for X11 forwarding. Run rstudio:
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        $ module load Rstudio
        $ rstudio
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    ### Batch execution
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    To run R in batch mode, write an R script, then write a bash jobscript and execute via the qsub command. By default, R will use 16 threads when running MKL kernels.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    Example jobscript:
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        #!/bin/bash
    
        # change to local scratch directory
        cd /lscratch/$PBS_JOBID || exit
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        # copy input file to scratch
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        cp $PBS_O_WORKDIR/rscript.R .
    
        # load R module
        module load R
    
        # execute the calculation
        R CMD BATCH rscript.R routput.out
    
        # copy output file to home
        cp routput.out $PBS_O_WORKDIR/.
    
        #exit
        exit
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    David Hrbáč's avatar
    David Hrbáč committed
    This script may be submitted directly to the PBS workload manager via the qsub command.  The inputs are in rscript.R file, outputs in routput.out file. See the single node jobscript example in the [Job execution section](../../resource-allocation-and-job-execution/job-submission-and-execution/).
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    David Hrbáč's avatar
    David Hrbáč committed
    ## Parallel R
    
    
    David Hrbáč's avatar
    David Hrbáč committed
    Parallel execution of R may be achieved in many ways. One approach is the implied parallelization due to linked libraries or specially enabled functions, as [described above](r/#interactive-execution). In the following sections, we focus on explicit parallelization, where  parallel constructs are directly stated within the R script.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    David Hrbáč's avatar
    David Hrbáč committed
    ## Package parallel
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    The package parallel provides support for parallel computation, including by forking (taken from package multicore), by sockets (taken from package snow) and random-number generation.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    The package is activated this way:
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        $ R
        > library(parallel)
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    More information and examples may be obtained directly by reading the documentation available in R
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        > ?parallel
        > library(help = "parallel")
        > vignette("parallel")
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Download the package [parallell](package-parallel-vignette.pdf) vignette.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    The forking is the most simple to use. Forking family of functions provide parallelized, drop in replacement for the serial apply() family of functions.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    !!! Note "Note"
    	Forking via package parallel provides functionality similar to OpenMP construct
    
    
    David Hrbáč's avatar
    David Hrbáč committed
        omp parallel for
    
    David Hrbáč's avatar
    David Hrbáč committed
        Only cores of single node can be utilized this way!
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    Forking example:
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        library(parallel)
    
        #integrand function
        f <- function(i,h) {
        x <- h*(i-0.5)
        return (4/(1 + x*x))
        }
    
        #initialize
        size <- detectCores()
    
        while (TRUE)
        {
          #read number of intervals
          cat("Enter the number of intervals: (0 quits) ")
          fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
    
          if(n<=0) break
    
          #run the calculation
          n <- max(n,size)
          h <-   1.0/n
    
          i <- seq(1,n);
          pi3 <- h*sum(simplify2array(mclapply(i,f,h,mc.cores=size)));
    
          #print results
          cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
        }
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    The above example is the classic parallel example for calculating the number π. Note the **detectCores()** and **mclapply()** functions. Execute the example as:
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        $ R --slave --no-save --no-restore -f pi3p.R
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    Every evaluation of the integrad function runs in parallel on different process.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    David Hrbáč's avatar
    David Hrbáč committed
    ## Package Rmpi
    
    
    !!! Note "Note"
    	package Rmpi provides an interface (wrapper) to MPI APIs.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    It also provides interactive R slave environment. On Anselm, Rmpi provides interface to the [OpenMPI](../mpi-1/Running_OpenMPI/).
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Read more on Rmpi at <http://cran.r-project.org/web/packages/Rmpi/>, reference manual is available at <http://cran.r-project.org/web/packages/Rmpi/Rmpi.pdf>
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    When using package Rmpi, both openmpi and R modules must be loaded
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        $ module load openmpi
        $ module load R
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    Rmpi may be used in three basic ways. The static approach is identical to executing any other MPI programm. In addition, there is Rslaves dynamic MPI approach and the mpi.apply approach. In the following section, we will use the number π integration example, to illustrate all these concepts.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    ### static Rmpi
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    Static Rmpi programs are executed via mpiexec, as any other MPI programs. Number of processes is static - given at the launch time.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    Static Rmpi example:
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```cpp
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        library(Rmpi)
    
        #integrand function
        f <- function(i,h) {
        x <- h*(i-0.5)
        return (4/(1 + x*x))
        }
    
        #initialize
        invisible(mpi.comm.dup(0,1))
        rank <- mpi.comm.rank()
        size <- mpi.comm.size()
        n<-0
    
        while (TRUE)
        {
          #read number of intervals
          if (rank==0) {
           cat("Enter the number of intervals: (0 quits) ")
           fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
          }
    
          #broadcat the intervals
          n <- mpi.bcast(as.integer(n),type=1)
    
          if(n<=0) break
    
          #run the calculation
          n <- max(n,size)
          h <-   1.0/n
    
          i <- seq(rank+1,n,size);
          mypi <- h*sum(sapply(i,f,h));
    
          pi3 <- mpi.reduce(mypi)
    
          #print results
          if (rank==0) cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
        }
    
        mpi.quit()
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    The above is the static MPI example for calculating the number π. Note the **library(Rmpi)** and **mpi.comm.dup()** function calls.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    Execute the example as:
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        $ mpiexec R --slave --no-save --no-restore -f pi3.R
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    ### dynamic Rmpi
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    Dynamic Rmpi programs are executed by calling the R directly. openmpi module must be still loaded. The R slave processes will be spawned by a function call within the Rmpi program.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    Dynamic Rmpi example:
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```cpp
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        #integrand function
        f <- function(i,h) {
        x <- h*(i-0.5)
        return (4/(1 + x*x))
        }
    
        #the worker function
        workerpi <- function()
        {
        #initialize
        rank <- mpi.comm.rank()
        size <- mpi.comm.size()
        n<-0
    
        while (TRUE)
        {
          #read number of intervals
          if (rank==0) {
           cat("Enter the number of intervals: (0 quits) ")
           fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
          }
    
          #broadcat the intervals
          n <- mpi.bcast(as.integer(n),type=1)
    
          if(n<=0) break
    
          #run the calculation
          n <- max(n,size)
          h <-   1.0/n
    
          i <- seq(rank+1,n,size);
          mypi <- h*sum(sapply(i,f,h));
    
          pi3 <- mpi.reduce(mypi)
    
          #print results
          if (rank==0) cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
        }
        }
    
        #main
        library(Rmpi)
    
        cat("Enter the number of slaves: ")
        fp<-file("stdin"); ns<-scan(fp,nmax=1); close(fp)
    
        mpi.spawn.Rslaves(nslaves=ns)
        mpi.bcast.Robj2slave(f)
        mpi.bcast.Robj2slave(workerpi)
    
        mpi.bcast.cmd(workerpi())
        workerpi()
    
        mpi.quit()
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    The above example is the dynamic MPI example for calculating the number π. Both master and slave processes carry out the calculation. Note the mpi.spawn.Rslaves(), mpi.bcast.Robj2slave()** and the mpi.bcast.cmd()** function calls.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    Execute the example as:
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        $ R --slave --no-save --no-restore -f pi3Rslaves.R
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    ### mpi.apply Rmpi
    
    mpi.apply is a specific way of executing Dynamic Rmpi programs.
    
    
    !!! Note "Note"
    	mpi.apply() family of functions provide MPI parallelized, drop in replacement for the serial apply() family of functions.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    Execution is identical to other dynamic Rmpi programs.
    
    mpi.apply Rmpi example:
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        #integrand function
        f <- function(i,h) {
        x <- h*(i-0.5)
        return (4/(1 + x*x))
        }
    
        #the worker function
        workerpi <- function(rank,size,n)
        {
          #run the calculation
          n <- max(n,size)
          h <- 1.0/n
    
          i <- seq(rank,n,size);
          mypi <- h*sum(sapply(i,f,h));
    
          return(mypi)
        }
    
        #main
        library(Rmpi)
    
        cat("Enter the number of slaves: ")
        fp<-file("stdin"); ns<-scan(fp,nmax=1); close(fp)
    
        mpi.spawn.Rslaves(nslaves=ns)
        mpi.bcast.Robj2slave(f)
        mpi.bcast.Robj2slave(workerpi)
    
        while (TRUE)
        {
          #read number of intervals
          cat("Enter the number of intervals: (0 quits) ")
          fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
          if(n<=0) break
    
          #run workerpi
          i=seq(1,2*ns)
          pi3=sum(mpi.parSapply(i,workerpi,2*ns,n))
    
          #print results
          cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
        }
    
        mpi.quit()
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    The above is the mpi.apply MPI example for calculating the number π. Only the slave processes carry out the calculation. Note the **mpi.parSapply()**, function call. The package parallel [example](r/#package-parallel)[above](r/#package-parallel) may be trivially adapted (for much better performance) to this structure using the mclapply() in place of mpi.parSapply().
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    Execute the example as:
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        $ R --slave --no-save --no-restore -f pi3parSapply.R
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    David Hrbáč's avatar
    David Hrbáč committed
    ## Combining parallel and Rmpi
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    Currently, the two packages can not be combined for hybrid calculations.
    
    
    David Hrbáč's avatar
    David Hrbáč committed
    ## Parallel execution
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    The R parallel jobs are executed via the PBS queue system exactly as any other parallel jobs. User must create an appropriate jobscript and submit via the **qsub**
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Example jobscript for [static Rmpi](r/#static-rmpi) parallel R execution, running 1 process per core:
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        #!/bin/bash
        #PBS -q qprod
        #PBS -N Rjob
        #PBS -l select=100:ncpus=16:mpiprocs=16:ompthreads=1
    
        # change to  scratch directory
        SCRDIR=/scratch/$USER/myjob
        cd $SCRDIR || exit
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        # copy input file to scratch
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        cp $PBS_O_WORKDIR/rscript.R .
    
        # load R and openmpi module
        module load R
        module load openmpi
    
        # execute the calculation
        mpiexec -bycore -bind-to-core R --slave --no-save --no-restore -f rscript.R
    
        # copy output file to home
        cp routput.out $PBS_O_WORKDIR/.
    
        #exit
        exit
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    David Hrbáč's avatar
    David Hrbáč committed
    For more information about jobscript and MPI execution refer to the [Job submission](../../resource-allocation-and-job-execution/job-submission-and-execution/) and general [MPI](../mpi/mpi/) sections.