Newer
Older
The R is a language and environment for statistical computing and graphics. R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, ...) and graphical techniques, and is highly extensible.
One of R's strengths is the ease with which well-designed publication-quality plots can be produced, including mathematical symbols and formulae where needed. Great care has been taken over the defaults for the minor design choices in graphics, but the user retains full control.
Another convenience is the ease with which the C code or third party libraries may be integrated within R.
Extensive support for parallel computing is available within R.
Read more on <http://www.r-project.org/>, <http://cran.r-project.org/doc/manuals/r-release/R-lang.html>
The R version 3.0.1 is available on Anselm, along with GUI interface Rstudio
| Application | Version | module |
| ----------- | ------------ | ------- |
| **R** | R 3.0.1 | R |
| **Rstudio** | Rstudio 0.97 | Rstudio |
The R on Anselm is linked to highly optimized MKL mathematical library. This provides threaded parallelization to many R kernels, notably the linear algebra subroutines. The R runs these heavy calculation kernels without any penalty. By default, the R would parallelize to 16 threads. You may control the threads by setting the OMP_NUM_THREADS environment variable.
To run R interactively, using Rstudio GUI, log in with ssh -X parameter for X11 forwarding. Run rstudio:
To run R in batch mode, write an R script, then write a bash jobscript and execute via the qsub command. By default, R will use 16 threads when running MKL kernels.
#!/bin/bash
# change to local scratch directory
cd /lscratch/$PBS_JOBID || exit
cp $PBS_O_WORKDIR/rscript.R .
# load R module
module load R
# execute the calculation
R CMD BATCH rscript.R routput.out
# copy output file to home
cp routput.out $PBS_O_WORKDIR/.
#exit
exit
This script may be submitted directly to the PBS workload manager via the qsub command. The inputs are in rscript.R file, outputs in routput.out file. See the single node jobscript example in the [Job execution section](../../resource-allocation-and-job-execution/job-submission-and-execution/).
Parallel execution of R may be achieved in many ways. One approach is the implied parallelization due to linked libraries or specially enabled functions, as [described above](r/#interactive-execution). In the following sections, we focus on explicit parallelization, where parallel constructs are directly stated within the R script.
The package parallel provides support for parallel computation, including by forking (taken from package multicore), by sockets (taken from package snow) and random-number generation.
More information and examples may be obtained directly by reading the documentation available in R
> ?parallel
> library(help = "parallel")
> vignette("parallel")
Download the package [parallell](package-parallel-vignette.pdf) vignette.
The forking is the most simple to use. Forking family of functions provide parallelized, drop in replacement for the serial apply() family of functions.
!!! Note "Note"
Forking via package parallel provides functionality similar to OpenMP construct
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
library(parallel)
#integrand function
f <- function(i,h) {
x <- h*(i-0.5)
return (4/(1 + x*x))
}
#initialize
size <- detectCores()
while (TRUE)
{
#read number of intervals
cat("Enter the number of intervals: (0 quits) ")
fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
if(n<=0) break
#run the calculation
n <- max(n,size)
h <- 1.0/n
i <- seq(1,n);
pi3 <- h*sum(simplify2array(mclapply(i,f,h,mc.cores=size)));
#print results
cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
}
The above example is the classic parallel example for calculating the number π. Note the **detectCores()** and **mclapply()** functions. Execute the example as:
Every evaluation of the integrad function runs in parallel on different process.
!!! Note "Note"
package Rmpi provides an interface (wrapper) to MPI APIs.
It also provides interactive R slave environment. On Anselm, Rmpi provides interface to the [OpenMPI](../mpi-1/Running_OpenMPI/).
Read more on Rmpi at <http://cran.r-project.org/web/packages/Rmpi/>, reference manual is available at <http://cran.r-project.org/web/packages/Rmpi/Rmpi.pdf>
When using package Rmpi, both openmpi and R modules must be loaded
Rmpi may be used in three basic ways. The static approach is identical to executing any other MPI programm. In addition, there is Rslaves dynamic MPI approach and the mpi.apply approach. In the following section, we will use the number π integration example, to illustrate all these concepts.
Static Rmpi programs are executed via mpiexec, as any other MPI programs. Number of processes is static - given at the launch time.
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
library(Rmpi)
#integrand function
f <- function(i,h) {
x <- h*(i-0.5)
return (4/(1 + x*x))
}
#initialize
invisible(mpi.comm.dup(0,1))
rank <- mpi.comm.rank()
size <- mpi.comm.size()
n<-0
while (TRUE)
{
#read number of intervals
if (rank==0) {
cat("Enter the number of intervals: (0 quits) ")
fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
}
#broadcat the intervals
n <- mpi.bcast(as.integer(n),type=1)
if(n<=0) break
#run the calculation
n <- max(n,size)
h <- 1.0/n
i <- seq(rank+1,n,size);
mypi <- h*sum(sapply(i,f,h));
pi3 <- mpi.reduce(mypi)
#print results
if (rank==0) cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
}
mpi.quit()
```
The above is the static MPI example for calculating the number π. Note the **library(Rmpi)** and **mpi.comm.dup()** function calls.
Dynamic Rmpi programs are executed by calling the R directly. openmpi module must be still loaded. The R slave processes will be spawned by a function call within the Rmpi program.
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#integrand function
f <- function(i,h) {
x <- h*(i-0.5)
return (4/(1 + x*x))
}
#the worker function
workerpi <- function()
{
#initialize
rank <- mpi.comm.rank()
size <- mpi.comm.size()
n<-0
while (TRUE)
{
#read number of intervals
if (rank==0) {
cat("Enter the number of intervals: (0 quits) ")
fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
}
#broadcat the intervals
n <- mpi.bcast(as.integer(n),type=1)
if(n<=0) break
#run the calculation
n <- max(n,size)
h <- 1.0/n
i <- seq(rank+1,n,size);
mypi <- h*sum(sapply(i,f,h));
pi3 <- mpi.reduce(mypi)
#print results
if (rank==0) cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
}
}
#main
library(Rmpi)
cat("Enter the number of slaves: ")
fp<-file("stdin"); ns<-scan(fp,nmax=1); close(fp)
mpi.spawn.Rslaves(nslaves=ns)
mpi.bcast.Robj2slave(f)
mpi.bcast.Robj2slave(workerpi)
mpi.bcast.cmd(workerpi())
workerpi()
mpi.quit()
```
The above example is the dynamic MPI example for calculating the number π. Both master and slave processes carry out the calculation. Note the mpi.spawn.Rslaves(), mpi.bcast.Robj2slave()** and the mpi.bcast.cmd()** function calls.
### mpi.apply Rmpi
mpi.apply is a specific way of executing Dynamic Rmpi programs.
!!! Note "Note"
mpi.apply() family of functions provide MPI parallelized, drop in replacement for the serial apply() family of functions.
Execution is identical to other dynamic Rmpi programs.
mpi.apply Rmpi example:
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
#integrand function
f <- function(i,h) {
x <- h*(i-0.5)
return (4/(1 + x*x))
}
#the worker function
workerpi <- function(rank,size,n)
{
#run the calculation
n <- max(n,size)
h <- 1.0/n
i <- seq(rank,n,size);
mypi <- h*sum(sapply(i,f,h));
return(mypi)
}
#main
library(Rmpi)
cat("Enter the number of slaves: ")
fp<-file("stdin"); ns<-scan(fp,nmax=1); close(fp)
mpi.spawn.Rslaves(nslaves=ns)
mpi.bcast.Robj2slave(f)
mpi.bcast.Robj2slave(workerpi)
while (TRUE)
{
#read number of intervals
cat("Enter the number of intervals: (0 quits) ")
fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
if(n<=0) break
#run workerpi
i=seq(1,2*ns)
pi3=sum(mpi.parSapply(i,workerpi,2*ns,n))
#print results
cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
}
mpi.quit()
The above is the mpi.apply MPI example for calculating the number π. Only the slave processes carry out the calculation. Note the **mpi.parSapply()**, function call. The package parallel [example](r/#package-parallel)[above](r/#package-parallel) may be trivially adapted (for much better performance) to this structure using the mclapply() in place of mpi.parSapply().
Currently, the two packages can not be combined for hybrid calculations.
The R parallel jobs are executed via the PBS queue system exactly as any other parallel jobs. User must create an appropriate jobscript and submit via the **qsub**
Example jobscript for [static Rmpi](r/#static-rmpi) parallel R execution, running 1 process per core:
#!/bin/bash
#PBS -q qprod
#PBS -N Rjob
#PBS -l select=100:ncpus=16:mpiprocs=16:ompthreads=1
# change to scratch directory
SCRDIR=/scratch/$USER/myjob
cd $SCRDIR || exit
cp $PBS_O_WORKDIR/rscript.R .
# load R and openmpi module
module load R
module load openmpi
# execute the calculation
mpiexec -bycore -bind-to-core R --slave --no-save --no-restore -f rscript.R
# copy output file to home
cp routput.out $PBS_O_WORKDIR/.
#exit
exit
For more information about jobscript and MPI execution refer to the [Job submission](../../resource-allocation-and-job-execution/job-submission-and-execution/) and general [MPI](../mpi/mpi/) sections.