Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
Job submission and execution
============================
Job Submission
--------------
When allocating computational resources for the job, please specify
1. suitable queue for your job (default is qprod)
2. number of computational nodes required
3. number of cores per node required
4. maximum wall time allocated to your calculation, note that jobs
exceeding maximum wall time will be killed
5. Project ID
6. Jobscript or interactive switch
Use the **qsub** command to submit your job to a queue for allocation of
the computational resources.
Submit the job using the qsub command:
`
$ qsub -A Project_ID -q queue -l select=x:ncpus=y,walltime=[[hh:]mm:]ss[.ms] jobscript
`
The qsub submits the job into the queue, in another words the qsub
command creates a request to the PBS Job manager for allocation of
specified resources. The resources will be allocated when available,
subject to above described policies and constraints. **After the
resources are allocated the jobscript or interactive shell is executed
on first of the allocated nodes.**
PBS statement nodes (qsub -l nodes=nodespec) is not supported on Salomon
cluster.**
### Job Submission Examples
`
$ qsub -A OPEN-0-0 -q qprod -l select=64:ncpus=24,walltime=03:00:00 ./myjob
`
In this example, we allocate 64 nodes, 24 cores per node, for 3 hours.
We allocate these resources via the qprod queue, consumed resources will
be accounted to the Project identified by Project ID OPEN-0-0. Jobscript
myjob will be executed on the first node in the allocation.
`
$ qsub -q qexp -l select=4:ncpus=24 -I
`
In this example, we allocate 4 nodes, 24 cores per node, for 1 hour. We
allocate these resources via the qexp queue. The resources will be
available interactively
`
$ qsub -A OPEN-0-0 -q qlong -l select=10:ncpus=24 ./myjob
`
In this example, we allocate 10 nodes, 24 cores per node, for 72 hours.
We allocate these resources via the qlong queue. Jobscript myjob will be
executed on the first node in the allocation.
`
$ qsub -A OPEN-0-0 -q qfree -l select=10:ncpus=24 ./myjob
`
In this example, we allocate 10 nodes, 24 cores per node, for 12 hours.
We allocate these resources via the qfree queue. It is not required that
the project OPEN-0-0 has any available resources left. Consumed
resources are still accounted for. Jobscript myjob will be executed on
the first node in the allocation.
### Intel Xeon Phi co-processors
To allocate a node with Xeon Phi co-processor, user needs to specify
that in select statement. Currently only allocation of whole nodes with
both Phi cards as the smallest chunk is supported. Standard PBSPro
approach through attributes "accelerator", "naccelerators" and
"accelerator_model" is used. The "accelerator_model" can be omitted,
since on Salomon only one type of accelerator type/model is available.
The absence of specialized queue for accessing the nodes with cards
means, that the Phi cards can be utilized in any queue, including qexp
for testing/experiments, qlong for longer jobs, qfree after the project
resources have been spent, etc. The Phi cards are thus also available to
PRACE users. There's no need to ask for permission to utilize the Phi
cards in project proposals.
`
$ qsub -A OPEN-0-0 -I -q qprod -l select=1:ncpus=24:accelerator=True:naccelerators=2:accelerator_model=phi7120 ./myjob
`
In this example, we allocate 1 node, with 24 cores, with 2 Xeon Phi
7120p cards, running batch job ./myjob. The default time for qprod is
used, e. g. 24 hours.
`
$ qsub -A OPEN-0-0 -I -q qlong -l select=4:ncpus=24:accelerator=True:naccelerators=2 -l walltime=56:00:00 -I
`
In this example, we allocate 4 nodes, with 24 cores per node (totalling
96 cores), with 2 Xeon Phi 7120p cards per node (totalling 8 Phi cards),
running interactive job for 56 hours. The accelerator model name was
omitted.
### UV2000 SMP
14 NUMA nodes available on UV2000
Per NUMA node allocation.
Jobs are isolated by cpusets.
The UV2000 (node uv1) offers 3328GB of RAM and 112 cores, distributed in
14 NUMA nodes. A NUMA node packs 8 cores and approx. 236GB RAM. In the
PBS the UV2000 provides 14 chunks, a chunk per NUMA node (see
[Resource allocation
policy](resources-allocation-policy.html)). The jobs on
UV2000 are isolated from each other by cpusets, so that a job by one
user may not utilize CPU or memory allocated to a job by other user.
Always, full chunks are allocated, a job may only use resources of the
NUMA nodes allocated to itself.
`
$ qsub -A OPEN-0-0 -q qfat -l select=14 ./myjob
`
In this example, we allocate all 14 NUMA nodes (corresponds to 14
chunks), 112 cores of the SGI UV2000 node for 72 hours. Jobscript myjob
will be executed on the node uv1.
`
$ qsub -A OPEN-0-0 -q qfat -l select=1:mem=2000GB ./myjob
`
In this example, we allocate 2000GB of memory on the UV2000 for 72
hours. By requesting 2000GB of memory, 10 chunks are allocated.
Jobscript myjob will be executed on the node uv1.
### Useful tricks
All qsub options may be [saved directly into the
jobscript](job-submission-and-execution.html#PBSsaved). In
such a case, no options to qsub are needed.
`
$ qsub ./myjob
`
By default, the PBS batch system sends an e-mail only when the job is
aborted. Disabling mail events completely can be done like this:
`
$ qsub -m n
`
Advanced job placement
--------------------------
### Placement by name
Specific nodes may be allocated via the PBS
`
qsub -A OPEN-0-0 -q qprod -l select=1:ncpus=24:host=r24u35n680+1:ncpus=24:host=r24u36n681 -I
`
Or using short names
`
qsub -A OPEN-0-0 -q qprod -l select=1:ncpus=24:host=cns680+1:ncpus=24:host=cns681 -I
`
In this example, we allocate nodes r24u35n680 and r24u36n681, all 24
cores per node, for 24 hours. Consumed resources will be accounted to
the Project identified by Project ID OPEN-0-0. The resources will be
available interactively.
### Placement by |Hypercube|dimension|
Nodes may be selected via the PBS resource attribute ehc_[1-7]d .
|Hypercube|dimension|
--------------- |---|---|---------------------------------
|1D|ehc_1d|
|2D|ehc_2d|
|3D|ehc_3d|
|4D|ehc_4d|
|5D|ehc_5d|
|6D|ehc_6d|
|7D|ehc_7d|
`
$ qsub -A OPEN-0-0 -q qprod -l select=4:ncpus=24 -l place=group=ehc_1d -I
`
In this example, we allocate 4 nodes, 24 cores, selecting only the nodes
with [hypercube
dimension](../network-1/7d-enhanced-hypercube.html) 1.
### Placement by IB switch
Groups of computational nodes are connected to chassis integrated
Infiniband switches. These switches form the leaf switch layer of the
[Infiniband network](../network-1.html) . Nodes sharing
the leaf switch can communicate most efficiently. Sharing the same
switch prevents hops in the network and provides for unbiased, most
efficient network communication.
There are at most 9 nodes sharing the same Infiniband switch.
Infiniband switch list:
`
$ qmgr -c "print node @a" | grep switch
set node r4i1n11 resources_available.switch = r4i1s0sw1
set node r2i0n0 resources_available.switch = r2i0s0sw1
set node r2i0n1 resources_available.switch = r2i0s0sw1
...
`
List of all nodes per Infiniband switch:
`
$ qmgr -c "print node @a" | grep r36sw3
set node r36u31n964 resources_available.switch = r36sw3
set node r36u32n965 resources_available.switch = r36sw3
set node r36u33n966 resources_available.switch = r36sw3
set node r36u34n967 resources_available.switch = r36sw3
set node r36u35n968 resources_available.switch = r36sw3
set node r36u36n969 resources_available.switch = r36sw3
set node r37u32n970 resources_available.switch = r36sw3
set node r37u33n971 resources_available.switch = r36sw3
set node r37u34n972 resources_available.switch = r36sw3
`
Nodes sharing the same switch may be selected via the PBS resource
attribute switch.
We recommend allocating compute nodes of a single switch when best
possible computational network performance is required to run the job
efficiently:
`
$ qsub -A OPEN-0-0 -q qprod -l select=9:ncpus=24:switch=r4i1s0sw1 ./myjob
`
In this example, we request all the 9 nodes sharing the r4i1s0sw1 switch
for 24 hours.
`
$ qsub -A OPEN-0-0 -q qprod -l select=9:ncpus=24 -l place=group=switch ./myjob
`
In this example, we request 9 nodes placed on the same switch using node
grouping placement for 24 hours.
HTML commented section #1 (turbo boost is to be implemented)
Job Management
--------------
Check status of your jobs using the **qstat** and **check-pbs-jobs**
commands
`
$ qstat -a
$ qstat -a -u username
$ qstat -an -u username
$ qstat -f 12345.isrv5
`
Example:
`
$ qstat -a
srv11:
Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
--------------- -------- -- |---|---| ------ --- --- ------ ----- - -----
16287.isrv5 user1 qlong job1 6183 4 64 -- 144:0 R 38:25
16468.isrv5 user1 qlong job2 8060 4 64 -- 144:0 R 17:44
16547.isrv5 user2 qprod job3x 13516 2 32 -- 48:00 R 00:58
`
In this example user1 and user2 are running jobs named job1, job2 and
job3x. The jobs job1 and job2 are using 4 nodes, 16 cores per node each.
The job1 already runs for 38 hours and 25 minutes, job2 for 17 hours 44
minutes. The job1 already consumed 64*38.41 = 2458.6 core hours. The
job3x already consumed 0.96*32 = 30.93 core hours. These consumed core
hours will be accounted on the respective project accounts, regardless
of whether the allocated cores were actually used for computations.
Check status of your jobs using check-pbs-jobs command. Check presence
of user's PBS jobs' processes on execution hosts. Display load,
processes. Display job standard and error output. Continuously display
(tail -f) job standard or error output.
`
$ check-pbs-jobs --check-all
$ check-pbs-jobs --print-load --print-processes
$ check-pbs-jobs --print-job-out --print-job-err
$ check-pbs-jobs --jobid JOBID --check-all --print-all
$ check-pbs-jobs --jobid JOBID --tailf-job-out
`
Examples:
`
$ check-pbs-jobs --check-all
JOB 35141.dm2, session_id 71995, user user2, nodes r3i6n2,r3i6n3
Check session id: OK
Check processes
r3i6n2: OK
r3i6n3: No process
`
In this example we see that job 35141.dm2 currently runs no process on
allocated node r3i6n2, which may indicate an execution error.
`
$ check-pbs-jobs --print-load --print-processes
JOB 35141.dm2, session_id 71995, user user2, nodes r3i6n2,r3i6n3
Print load
r3i6n2: LOAD: 16.01, 16.01, 16.00
r3i6n3: LOAD: 0.01, 0.00, 0.01
Print processes
%CPU CMD
r3i6n2: 0.0 -bash
r3i6n2: 0.0 /bin/bash /var/spool/PBS/mom_priv/jobs/35141.dm2.SC
r3i6n2: 99.7 run-task
...
`
In this example we see that job 35141.dm2 currently runs process
run-task on node r3i6n2, using one thread only, while node r3i6n3 is
empty, which may indicate an execution error.
`
$ check-pbs-jobs --jobid 35141.dm2 --print-job-out
JOB 35141.dm2, session_id 71995, user user2, nodes r3i6n2,r3i6n3
Print job standard output:
======================== Job start ==========================
Started at : Fri Aug 30 02:47:53 CEST 2013
Script name : script
Run loop 1
Run loop 2
Run loop 3
`
In this example, we see actual output (some iteration loops) of the job
35141.dm2
Manage your queued or running jobs, using the **qhold**, **qrls**,
qdel,** **qsig** or **qalter** commands
You may release your allocation at any time, using qdel command
`
$ qdel 12345.isrv5
`
You may kill a running job by force, using qsig command
`
$ qsig -s 9 12345.isrv5
`
Learn more by reading the pbs man page
`
$ man pbs_professional
`
Job Execution
-------------
### Jobscript
Prepare the jobscript to run batch jobs in the PBS queue system
The Jobscript is a user made script, controlling sequence of commands
for executing the calculation. It is often written in bash, other
scripts may be used as well. The jobscript is supplied to PBS **qsub**
command as an argument and executed by the PBS Professional workload
manager.
The jobscript or interactive shell is executed on first of the allocated
nodes.
`
$ qsub -q qexp -l select=4:ncpus=24 -N Name0 ./myjob
$ qstat -n -u username
isrv5:
Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
--------------- -------- -- |---|---| ------ --- --- ------ ----- - -----
15209.isrv5 username qexp Name0 5530 4 96 -- 01:00 R 00:00
r21u01n577/0*24+r21u02n578/0*24+r21u03n579/0*24+r21u04n580/0*24
`
In this example, the nodes r21u01n577, r21u02n578, r21u03n579,
r21u04n580 were allocated for 1 hour via the qexp queue. The jobscript
myjob will be executed on the node r21u01n577, while the
nodes r21u02n578, r21u03n579, r21u04n580 are available for use as well.
The jobscript or interactive shell is by default executed in home
directory
`
$ qsub -q qexp -l select=4:ncpus=24 -I
qsub: waiting for job 15210.isrv5 to start
qsub: job 15210.isrv5 ready
$ pwd
/home/username
`
In this example, 4 nodes were allocated interactively for 1 hour via the
qexp queue. The interactive shell is executed in the home directory.
All nodes within the allocation may be accessed via ssh. Unallocated
nodes are not accessible to user.
The allocated nodes are accessible via ssh from login nodes. The nodes
may access each other via ssh as well.
Calculations on allocated nodes may be executed remotely via the MPI,
ssh, pdsh or clush. You may find out which nodes belong to the
allocation by reading the $PBS_NODEFILE file
`
qsub -q qexp -l select=2:ncpus=24 -I
qsub: waiting for job 15210.isrv5 to start
qsub: job 15210.isrv5 ready
$ pwd
/home/username
$ sort -u $PBS_NODEFILE
r2i5n6.ib0.smc.salomon.it4i.cz
r4i6n13.ib0.smc.salomon.it4i.cz
r4i7n0.ib0.smc.salomon.it4i.cz
r4i7n2.ib0.smc.salomon.it4i.cz
$ pdsh -w r2i5n6,r4i6n13,r4i7n[0,2] hostname
r4i6n13: r4i6n13
r2i5n6: r2i5n6
r4i7n2: r4i7n2
r4i7n0: r4i7n0
`
In this example, the hostname program is executed via pdsh from the
interactive shell. The execution runs on all four allocated nodes. The
same result would be achieved if the pdsh is called from any of the
allocated nodes or from the login nodes.
### Example Jobscript for MPI Calculation
Production jobs must use the /scratch directory for I/O
The recommended way to run production jobs is to change to /scratch
directory early in the jobscript, copy all inputs to /scratch, execute
the calculations and copy outputs to home directory.
`
#!/bin/bash
# change to scratch directory, exit on failure
SCRDIR=/scratch/work/user/$USER/myjob
mkdir -p $SCRDIR
cd $SCRDIR || exit
# copy input file to scratch
cp $PBS_O_WORKDIR/input .
cp $PBS_O_WORKDIR/mympiprog.x .
# load the mpi module
module load OpenMPI
# execute the calculation
mpiexec -pernode ./mympiprog.x
# copy output file to home
cp output $PBS_O_WORKDIR/.
#exit
exit
`
In this example, some directory on the /home holds the input file input
and executable mympiprog.x . We create a directory myjob on the /scratch
filesystem, copy input and executable files from the /home directory
where the qsub was invoked ($PBS_O_WORKDIR) to /scratch, execute the
MPI programm mympiprog.x and copy the output file back to the /home
directory. The mympiprog.x is executed as one process per node, on all
allocated nodes.
Consider preloading inputs and executables onto [shared
scratch](../storage.html) before the calculation starts.
In some cases, it may be impractical to copy the inputs to scratch and
outputs to home. This is especially true when very large input and
output files are expected, or when the files should be reused by a
subsequent calculation. In such a case, it is users responsibility to
preload the input files on shared /scratch before the job submission and
retrieve the outputs manually, after all calculations are finished.
Store the qsub options within the jobscript.
Use **mpiprocs** and **ompthreads** qsub options to control the MPI job
execution.
Example jobscript for an MPI job with preloaded inputs and executables,
options for qsub are stored within the script :
`
#!/bin/bash
#PBS -q qprod
#PBS -N MYJOB
#PBS -l select=100:ncpus=24:mpiprocs=1:ompthreads=24
#PBS -A OPEN-0-0
# change to scratch directory, exit on failure
SCRDIR=/scratch/work/user/$USER/myjob
cd $SCRDIR || exit
# load the mpi module
module load OpenMPI
# execute the calculation
mpiexec ./mympiprog.x
#exit
exit
`
In this example, input and executable files are assumed preloaded
manually in /scratch/$USER/myjob directory. Note the **mpiprocs** and
ompthreads** qsub options, controlling behavior of the MPI execution.
The mympiprog.x is executed as one process per node, on all 100
allocated nodes. If mympiprog.x implements OpenMP threads, it will run
24 threads per node.
HTML commented section #2 (examples need to be reworked)
### Example Jobscript for Single Node Calculation
Local scratch directory is often useful for single node jobs. Local
scratch will be deleted immediately after the job ends.
Be very careful, use of RAM disk filesystem is at the expense of
operational memory.
Example jobscript for single node calculation, using [local
scratch](../storage.html) on the node:
`
#!/bin/bash
# change to local scratch directory
cd /lscratch/$PBS_JOBID || exit
# copy input file to scratch
cp $PBS_O_WORKDIR/input .
cp $PBS_O_WORKDIR/myprog.x .
# execute the calculation
./myprog.x
# copy output file to home
cp output $PBS_O_WORKDIR/.
#exit
exit
`
In this example, some directory on the home holds the input file input
and executable myprog.x . We copy input and executable files from the
home directory where the qsub was invoked ($PBS_O_WORKDIR) to local
scratch /lscratch/$PBS_JOBID, execute the myprog.x and copy the output
file back to the /home directory. The myprog.x runs on one node only and
may use threads.