Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Intel Xeon Phi
==============
A guide to Intel Xeon Phi usage
Intel Xeon Phi accelerator can be programmed in several modes. The
default mode on the cluster is offload mode, but all modes described in
this document are supported.
Intel Utilities for Xeon Phi
----------------------------
To get access to a compute node with Intel Xeon Phi accelerator, use the
PBS interactive session
$ qsub -I -q qprod -l select=1:ncpus=24:accelerator=True:naccelerators=2:accelerator_model=phi7120 -A NONE-0-0
To set up the environment module "intel" has to be loaded, without
specifying the version, default version is loaded (at time of writing
this, it's 2015b)
$ module load intel
Information about the hardware can be obtained by running
the micinfo program on the host.
$ /usr/bin/micinfo
The output of the "micinfo" utility executed on one of the cluster node
is as follows. (note: to get PCIe related details the command has to be
run with root privileges)
MicInfo Utility Log
Created Mon Aug 17 13:55:59 2015
System Info
HOST OS : Linux
OS Version : 2.6.32-504.16.2.el6.x86_64
Driver Version : 3.4.1-1
MPSS Version : 3.4.1
Host Physical Memory : 131930 MB
Device No: 0, Device Name: mic0
Version
Flash Version : 2.1.02.0390
SMC Firmware Version : 1.16.5078
SMC Boot Loader Version : 1.8.4326
uOS Version : 2.6.38.8+mpss3.4.1
Device Serial Number : ADKC44601414
Board
Vendor ID : 0x8086
Device ID : 0x225c
Subsystem ID : 0x7d95
Coprocessor Stepping ID : 2
PCIe Width : x16
PCIe Speed : 5 GT/s
PCIe Max payload size : 256 bytes
PCIe Max read req size : 512 bytes
Coprocessor Model : 0x01
Coprocessor Model Ext : 0x00
Coprocessor Type : 0x00
Coprocessor Family : 0x0b
Coprocessor Family Ext : 0x00
Coprocessor Stepping : C0
Board SKU : C0PRQ-7120 P/A/X/D
ECC Mode : Enabled
SMC HW Revision : Product 300W Passive CS
Cores
Total No of Active Cores : 61
Voltage : 1007000 uV
Frequency : 1238095 kHz
Thermal
Fan Speed Control : N/A
Fan RPM : N/A
Fan PWM : N/A
Die Temp : 60 C
GDDR
GDDR Vendor : Samsung
GDDR Version : 0x6
GDDR Density : 4096 Mb
GDDR Size : 15872 MB
GDDR Technology : GDDR5
GDDR Speed : 5.500000 GT/s
GDDR Frequency : 2750000 kHz
GDDR Voltage : 1501000 uV
Device No: 1, Device Name: mic1
Version
Flash Version : 2.1.02.0390
SMC Firmware Version : 1.16.5078
SMC Boot Loader Version : 1.8.4326
uOS Version : 2.6.38.8+mpss3.4.1
Device Serial Number : ADKC44500454
Board
Vendor ID : 0x8086
Device ID : 0x225c
Subsystem ID : 0x7d95
Coprocessor Stepping ID : 2
PCIe Width : x16
PCIe Speed : 5 GT/s
PCIe Max payload size : 256 bytes
PCIe Max read req size : 512 bytes
Coprocessor Model : 0x01
Coprocessor Model Ext : 0x00
Coprocessor Type : 0x00
Coprocessor Family : 0x0b
Coprocessor Family Ext : 0x00
Coprocessor Stepping : C0
Board SKU : C0PRQ-7120 P/A/X/D
ECC Mode : Enabled
SMC HW Revision : Product 300W Passive CS
Cores
Total No of Active Cores : 61
Voltage : 998000 uV
Frequency : 1238095 kHz
Thermal
Fan Speed Control : N/A
Fan RPM : N/A
Fan PWM : N/A
Die Temp : 59 C
GDDR
GDDR Vendor : Samsung
GDDR Version : 0x6
GDDR Density : 4096 Mb
GDDR Size : 15872 MB
GDDR Technology : GDDR5
GDDR Speed : 5.500000 GT/s
GDDR Frequency : 2750000 kHz
GDDR Voltage : 1501000 uV
Offload Mode
------------
To compile a code for Intel Xeon Phi a MPSS stack has to be installed on
the machine where compilation is executed. Currently the MPSS stack is
only installed on compute nodes equipped with accelerators.
$ qsub -I -q qprod -l select=1:ncpus=24:accelerator=True:naccelerators=2:accelerator_model=phi7120 -A NONE-0-0
$ module load intel
For debugging purposes it is also recommended to set environment
variable "OFFLOAD_REPORT". Value can be set from 0 to 3, where higher
number means more debugging information.
export OFFLOAD_REPORT=3
A very basic example of code that employs offload programming technique
is shown in the next listing. Please note that this code is sequential
and utilizes only single core of the accelerator.
$ vim source-offload.cpp
#include <iostream>
int main(int argc, char* argv[])
{
const int niter = 100000;
double result = 0;
#pragma offload target(mic)
for (int i = 0; i < niter; ++i) {
const double t = (i + 0.5) / niter;
result += 4.0 / (t * t + 1.0);
}
result /= niter;
std::cout << "Pi ~ " << result << 'n';
}
To compile a code using Intel compiler run
$ icc source-offload.cpp -o bin-offload
To execute the code, run the following command on the host
./bin-offload
### Parallelization in Offload Mode Using OpenMP
One way of paralelization a code for Xeon Phi is using OpenMP
directives. The following example shows code for parallel vector
addition.
$ vim ./vect-add
#include <stdio.h>
typedef int T;
#define SIZE 1000
#pragma offload_attribute(push, target(mic))
T in1[SIZE];
T in2[SIZE];
T res[SIZE];
#pragma offload_attribute(pop)
// MIC function to add two vectors
__attribute__((target(mic))) add_mic(T *a, T *b, T *c, int size) {
int i = 0;
#pragma omp parallel for
for (i = 0; i < size; i++)
c[i] = a[i] + b[i];
}
// CPU function to add two vectors
void add_cpu (T *a, T *b, T *c, int size) {
int i;
for (i = 0; i < size; i++)
c[i] = a[i] + b[i];
}
// CPU function to generate a vector of random numbers
void random_T (T *a, int size) {
int i;
for (i = 0; i < size; i++)
a[i] = rand() % 10000; // random number between 0 and 9999
}
// CPU function to compare two vectors
int compare(T *a, T *b, T size ){
int pass = 0;
int i;
for (i = 0; i < size; i++){
if (a[i] != b[i]) {
printf("Value mismatch at location %d, values %d and %dn",i, a[i], b[i]);
pass = 1;
}
}
if (pass == 0) printf ("Test passedn"); else printf ("Test Failedn");
return pass;
}
int main()
{
int i;
random_T(in1, SIZE);
random_T(in2, SIZE);
#pragma offload target(mic) in(in1,in2) inout(res)
{
// Parallel loop from main function
#pragma omp parallel for
for (i=0; i<SIZE; i++)
res[i] = in1[i] + in2[i];
// or parallel loop is called inside the function
add_mic(in1, in2, res, SIZE);
}
//Check the results with CPU implementation
T res_cpu[SIZE];
add_cpu(in1, in2, res_cpu, SIZE);
compare(res, res_cpu, SIZE);
}
During the compilation Intel compiler shows which loops have been
vectorized in both host and accelerator. This can be enabled with
compiler option "-vec-report2". To compile and execute the code run
$ icc vect-add.c -openmp_report2 -vec-report2 -o vect-add
$ ./vect-add
Some interesting compiler flags useful not only for code debugging are:
Debugging
openmp_report[0|1|2] - controls the compiler based vectorization
diagnostic level
vec-report[0|1|2] - controls the OpenMP parallelizer diagnostic
level
Performance ooptimization
xhost - FOR HOST ONLY - to generate AVX (Advanced Vector Extensions)
instructions.
Automatic Offload using Intel MKL Library
-----------------------------------------
Intel MKL includes an Automatic Offload (AO) feature that enables
computationally intensive MKL functions called in user code to benefit
from attached Intel Xeon Phi coprocessors automatically and
transparently.
Behavioural of automatic offload mode is controlled by functions called
within the program or by environmental variables. Complete list of
controls is listed [
here](http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_userguide_lnx/GUID-3DC4FC7D-A1E4-423D-9C0C-06AB265FFA86.htm).
The Automatic Offload may be enabled by either an MKL function call
within the code:
mkl_mic_enable();
or by setting environment variable
$ export MKL_MIC_ENABLE=1
To get more information about automatic offload please refer to "[Using
Intel® MKL Automatic Offload on Intel ® Xeon Phi™
Coprocessors](http://software.intel.com/sites/default/files/11MIC42_How_to_Use_MKL_Automatic_Offload_0.pdf)"
white paper or [ Intel MKL
documentation](https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation).
### Automatic offload example #1
Following example show how to automatically offload an SGEMM (single
precision - g dir="auto">eneral matrix multiply) function to
MIC coprocessor.
At first get an interactive PBS session on a node with MIC accelerator
and load "intel" module that automatically loads "mkl" module as well.
$ qsub -I -q qprod -l select=1:ncpus=24:accelerator=True:naccelerators=2:accelerator_model=phi7120 -A NONE-0-0
$ module load intel
The code can be copied to a file and compiled without any necessary
modification.
$ vim sgemm-ao-short.c
`
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <stdint.h>
#include "mkl.h"
int main(int argc, char **argv)
{
float *A, *B, *C; /* Matrices */
MKL_INT N = 2560; /* Matrix dimensions */
MKL_INT LD = N; /* Leading dimension */
int matrix_bytes; /* Matrix size in bytes */
int matrix_elements; /* Matrix size in elements */
float alpha = 1.0, beta = 1.0; /* Scaling factors */
char transa = 'N', transb = 'N'; /* Transposition options */
int i, j; /* Counters */
matrix_elements = N * N;
matrix_bytes = sizeof(float) * matrix_elements;
/* Allocate the matrices */
A = malloc(matrix_bytes); B = malloc(matrix_bytes); C = malloc(matrix_bytes);
/* Initialize the matrices */
for (i = 0; i < matrix_elements; i++) {
A[i] = 1.0; B[i] = 2.0; C[i] = 0.0;
}
printf("Computing SGEMM on the hostn");
sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N, &beta, C, &N);
printf("Enabling Automatic Offloadn");
/* Alternatively, set environment variable MKL_MIC_ENABLE=1 */
mkl_mic_enable();
int ndevices = mkl_mic_get_device_count(); /* Number of MIC devices */
printf("Automatic Offload enabled: %d MIC devices presentn", ndevices);
printf("Computing SGEMM with automatic workdivisionn");
sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N, &beta, C, &N);
/* Free the matrix memory */
free(A); free(B); free(C);
printf("Donen");
return 0;
}
`
Please note: This example is simplified version of an example from MKL.
The expanded version can be found here:
$MKL_EXAMPLES/mic_ao/blasc/source/sgemm.c**
To compile a code using Intel compiler use:
$ icc -mkl sgemm-ao-short.c -o sgemm
For debugging purposes enable the offload report to see more information
about automatic offloading.
$ export OFFLOAD_REPORT=2
The output of a code should look similar to following listing, where
lines starting with [MKL] are generated by offload reporting:
[user@r31u03n799 ~]$ ./sgemm
Computing SGEMM on the host
Enabling Automatic Offload
Automatic Offload enabled: 2 MIC devices present
Computing SGEMM with automatic workdivision
[MKL] [MIC --] [AO Function] SGEMM
[MKL] [MIC --] [AO SGEMM Workdivision] 0.44 0.28 0.28
[MKL] [MIC 00] [AO SGEMM CPU Time] 0.252427 seconds
[MKL] [MIC 00] [AO SGEMM MIC Time] 0.091001 seconds
[MKL] [MIC 00] [AO SGEMM CPU->MIC Data] 34078720 bytes
[MKL] [MIC 00] [AO SGEMM MIC->CPU Data] 7864320 bytes
[MKL] [MIC 01] [AO SGEMM CPU Time] 0.252427 seconds
[MKL] [MIC 01] [AO SGEMM MIC Time] 0.094758 seconds
[MKL] [MIC 01] [AO SGEMM CPU->MIC Data] 34078720 bytes
[MKL] [MIC 01] [AO SGEMM MIC->CPU Data] 7864320 bytes
Done
Behavioral of automatic offload mode is controlled by functions called
within the program or by environmental variables. Complete list of
controls is listed [
here](http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_userguide_lnx/GUID-3DC4FC7D-A1E4-423D-9C0C-06AB265FFA86.htm).
To get more information about automatic offload please refer to "[Using
Intel® MKL Automatic Offload on Intel ® Xeon Phi™
Coprocessors](http://software.intel.com/sites/default/files/11MIC42_How_to_Use_MKL_Automatic_Offload_0.pdf)"
white paper or [ Intel MKL
documentation](https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation).
### Automatic offload example #2
In this example, we will demonstrate automatic offload control via an
environment vatiable MKL_MIC_ENABLE. The function DGEMM will be
offloaded.
At first get an interactive PBS session on a node with MIC accelerator.
$ qsub -I -q qprod -l select=1:ncpus=24:accelerator=True:naccelerators=2:accelerator_model=phi7120 -A NONE-0-0
Once in, we enable the offload and run the Octave software. In octave,
we generate two large random matrices and let them multiply together.
$ export MKL_MIC_ENABLE=1
$ export OFFLOAD_REPORT=2
$ module load Octave/3.8.2-intel-2015b
$ octave -q
octave:1> A=rand(10000);
octave:2> B=rand(10000);
octave:3> C=A*B;
[MKL] [MIC --] [AO Function] DGEMM
[MKL] [MIC --] [AO DGEMM Workdivision] 0.14 0.43 0.43
[MKL] [MIC 00] [AO DGEMM CPU Time] 3.814714 seconds
[MKL] [MIC 00] [AO DGEMM MIC Time] 2.781595 seconds
[MKL] [MIC 00] [AO DGEMM CPU->MIC Data] 1145600000 bytes
[MKL] [MIC 00] [AO DGEMM MIC->CPU Data] 1382400000 bytes
[MKL] [MIC 01] [AO DGEMM CPU Time] 3.814714 seconds
[MKL] [MIC 01] [AO DGEMM MIC Time] 2.843016 seconds
[MKL] [MIC 01] [AO DGEMM CPU->MIC Data] 1145600000 bytes
[MKL] [MIC 01] [AO DGEMM MIC->CPU Data] 1382400000 bytes
octave:4> exit
On the example above we observe, that the DGEMM function workload was
split over CPU, MIC 0 and MIC 1, in the ratio 0.14 0.43 0.43. The matrix
multiplication was done on the CPU, accelerated by two Xeon Phi
accelerators.
Native Mode
-----------
In the native mode a program is executed directly on Intel Xeon Phi
without involvement of the host machine. Similarly to offload mode, the
code is compiled on the host computer with Intel compilers.
To compile a code user has to be connected to a compute with MIC and
load Intel compilers module. To get an interactive session on a compute
node with an Intel Xeon Phi and load the module use following commands:
$ qsub -I -q qprod -l select=1:ncpus=24:accelerator=True:naccelerators=2:accelerator_model=phi7120 -A NONE-0-0
$ module load intel
Please note that particular version of the Intel module is specified.
This information is used later to specify the correct library paths.
To produce a binary compatible with Intel Xeon Phi architecture user has
to specify "-mmic" compiler flag. Two compilation examples are shown
below. The first example shows how to compile OpenMP parallel code
"vect-add.c" for host only:
$ icc -xhost -no-offload -fopenmp vect-add.c -o vect-add-host
To run this code on host, use:
$ ./vect-add-host
The second example shows how to compile the same code for Intel Xeon
Phi:
$ icc -mmic -fopenmp vect-add.c -o vect-add-mic
### Execution of the Program in Native Mode on Intel Xeon Phi
The user access to the Intel Xeon Phi is through the SSH. Since user
home directories are mounted using NFS on the accelerator, users do not
have to copy binary files or libraries between the host and accelerator.
Get the PATH of MIC enabled libraries for currently used Intel Compiler
(here was icc/2015.3.187-GNU-5.1.0-2.25 used) :
$ echo $MIC_LD_LIBRARY_PATH
/apps/all/icc/2015.3.187-GNU-5.1.0-2.25/composer_xe_2015.3.187/compiler/lib/mic
To connect to the accelerator run:
$ ssh mic0
If the code is sequential, it can be executed directly:
mic0 $ ~/path_to_binary/vect-add-seq-mic
If the code is parallelized using OpenMP a set of additional libraries
is required for execution. To locate these libraries new path has to be
added to the LD_LIBRARY_PATH environment variable prior to the
execution:
mic0 $ export LD_LIBRARY_PATH=/apps/all/icc/2015.3.187-GNU-5.1.0-2.25/composer_xe_2015.3.187/compiler/lib/mic:$LD_LIBRARY_PATH
Please note that the path exported in the previous example contains path
to a specific compiler (here the version is 2015.3.187-GNU-5.1.0-2.25).
This version number has to match with the version number of the Intel
compiler module that was used to compile the code on the host computer.
For your information the list of libraries and their location required
for execution of an OpenMP parallel code on Intel Xeon Phi is:
/apps/all/icc/2015.3.187-GNU-5.1.0-2.25/composer_xe_2015.3.187/compiler/lib/mic
libiomp5.so
libimf.so
libsvml.so
libirng.so
libintlc.so.5
Finally, to run the compiled code use:
$ ~/path_to_binary/vect-add-mic
OpenCL
-------------------
OpenCL (Open Computing Language) is an open standard for
general-purpose parallel programming for diverse mix of multi-core CPUs,
GPU coprocessors, and other parallel processors. OpenCL provides a
flexible execution model and uniform programming environment for
software developers to write portable code for systems running on both
the CPU and graphics processors or accelerators like the Intel® Xeon
Phi.
On Anselm OpenCL is installed only on compute nodes with MIC
accelerator, therefore OpenCL code can be compiled only on these nodes.
module load opencl-sdk opencl-rt
Always load "opencl-sdk" (providing devel files like headers) and
"opencl-rt" (providing dynamic library libOpenCL.so) modules to compile
and link OpenCL code. Load "opencl-rt" for running your compiled code.
There are two basic examples of OpenCL code in the following
directory:
/apps/intel/opencl-examples/
First example "CapsBasic" detects OpenCL compatible hardware, here
CPU and MIC, and prints basic information about the capabilities of
it.
/apps/intel/opencl-examples/CapsBasic/capsbasic
To compile and run the example copy it to your home directory, get
a PBS interactive session on of the nodes with MIC and run make for
compilation. Make files are very basic and shows how the OpenCL code can
be compiled on Anselm.
$ cp /apps/intel/opencl-examples/CapsBasic/* .
$ qsub -I -q qprod -l select=1:ncpus=24:accelerator=True:naccelerators=2:accelerator_model=phi7120 -A NONE-0-0
$ make
The compilation command for this example is:
$ g++ capsbasic.cpp -lOpenCL -o capsbasic -I/apps/intel/opencl/include/
After executing the complied binary file, following output should
be displayed.
./capsbasic
Number of available platforms: 1
Platform names:
[0] Intel(R) OpenCL [Selected]
Number of devices available for each type:
CL_DEVICE_TYPE_CPU: 1
CL_DEVICE_TYPE_GPU: 0
CL_DEVICE_TYPE_ACCELERATOR: 1
** Detailed information for each device ***
CL_DEVICE_TYPE_CPU[0]
CL_DEVICE_NAME: Intel(R) Xeon(R) CPU E5-2470 0 @ 2.30GHz
CL_DEVICE_AVAILABLE: 1
...
CL_DEVICE_TYPE_ACCELERATOR[0]
CL_DEVICE_NAME: Intel(R) Many Integrated Core Acceleration Card
CL_DEVICE_AVAILABLE: 1
...
More information about this example can be found on Intel website:
<http://software.intel.com/en-us/vcsource/samples/caps-basic/>
The second example that can be found in
"/apps/intel/opencl-examples" >directory is General Matrix
Multiply. You can follow the the same procedure to download the example
to your directory and compile it.
$ cp -r /apps/intel/opencl-examples/* .
$ qsub -I -q qprod -l select=1:ncpus=24:accelerator=True:naccelerators=2:accelerator_model=phi7120 -A NONE-0-0
$ cd GEMM
$ make
The compilation command for this example is:
$ g++ cmdoptions.cpp gemm.cpp ../common/basic.cpp ../common/cmdparser.cpp ../common/oclobject.cpp -I../common -lOpenCL -o gemm -I/apps/intel/opencl/include/
To see the performance of Intel Xeon Phi performing the DGEMM run
the example as follows:
./gemm -d 1
Platforms (1):
[0] Intel(R) OpenCL [Selected]
Devices (2):
[0] Intel(R) Xeon(R) CPU E5-2470 0 @ 2.30GHz
[1] Intel(R) Many Integrated Core Acceleration Card [Selected]
Build program options: "-DT=float -DTILE_SIZE_M=1 -DTILE_GROUP_M=16 -DTILE_SIZE_N=128 -DTILE_GROUP_N=1 -DTILE_SIZE_K=8"
Running gemm_nn kernel with matrix size: 3968x3968
Memory row stride to ensure necessary alignment: 15872 bytes
Size of memory region for one matrix: 62980096 bytes
Using alpha = 0.57599 and beta = 0.872412
...
Host time: 0.292953 sec.
Host perf: 426.635 GFLOPS
Host time: 0.293334 sec.
Host perf: 426.081 GFLOPS
...
Please note: GNU compiler is used to compile the OpenCL codes for
Intel MIC. You do not need to load Intel compiler module.
MPI
----------------
### Environment setup and compilation
To achieve best MPI performance always use following setup for Intel MPI
on Xeon Phi accelerated nodes:
$ export I_MPI_FABRICS=shm:dapl
$ export I_MPI_DAPL_PROVIDER_LIST=ofa-v2-mlx4_0-1u,ofa-v2-scif0,ofa-v2-mcm-1
This ensures, that MPI inside node will use SHMEM communication, between
HOST and Phi the IB SCIF will be used and between different nodes or
Phi's on diferent nodes a CCL-Direct proxy will be used.
Please note: Other FABRICS like tcp,ofa may be used (even combined with
shm) but there's severe loss of performance (by order of magnitude).
Usage of single DAPL PROVIDER (e. g.
I_MPI_DAPL_PROVIDER=ofa-v2-mlx4_0-1u) will cause failure of
Host<->Phi and/or Phi<->Phi communication.
Usage of the I_MPI_DAPL_PROVIDER_LIST on non-accelerated node will
cause failure of any MPI communication, since those nodes don't have
SCIF device and there's no CCL-Direct proxy runnig.
Again an MPI code for Intel Xeon Phi has to be compiled on a compute
node with accelerator and MPSS software stack installed. To get to a
compute node with accelerator use:
$ qsub -I -q qprod -l select=1:ncpus=24:accelerator=True:naccelerators=2:accelerator_model=phi7120 -A NONE-0-0
The only supported implementation of MPI standard for Intel Xeon Phi is
Intel MPI. To setup a fully functional development environment a
combination of Intel compiler and Intel MPI has to be used. On a host
load following modules before compilation:
$ module load intel impi
To compile an MPI code for host use:
$ mpiicc -xhost -o mpi-test mpi-test.c
To compile the same code for Intel Xeon Phi architecture use:
$ mpiicc -mmic -o mpi-test-mic mpi-test.c
Or, if you are using Fortran :
$ mpiifort -mmic -o mpi-test-mic mpi-test.f90
An example of basic MPI version of "hello-world" example in C language,
that can be executed on both host and Xeon Phi is (can be directly copy
and pasted to a .c file)
`
#include <stdio.h>
#include <mpi.h>
int main (argc, argv)
int argc;
char *argv[];
{
int rank, size;
int len;
char node[MPI_MAX_PROCESSOR_NAME];
MPI_Init (&argc, &argv); /* starts MPI */
MPI_Comm_rank (MPI_COMM_WORLD, &rank); /* get current process id */
MPI_Comm_size (MPI_COMM_WORLD, &size); /* get number of processes */
MPI_Get_processor_name(node,&len);
printf( "Hello world from process %d of %d on host %s n", rank, size, node );
MPI_Finalize();
return 0;
}
`
### MPI programming models
Intel MPI for the Xeon Phi coprocessors offers different MPI
programming models:
Host-only model** - all MPI ranks reside on the host. The coprocessors
can be used by using offload pragmas. (Using MPI calls inside offloaded
code is not supported.)**
Coprocessor-only model** - all MPI ranks reside only on the
coprocessors.
Symmetric model** - the MPI ranks reside on both the host and the
coprocessor. Most general MPI case.
###Host-only model
In this case all environment variables are set by modules,
so to execute the compiled MPI program on a single node, use:
$ mpirun -np 4 ./mpi-test
The output should be similar to:
Hello world from process 1 of 4 on host r38u31n1000
Hello world from process 3 of 4 on host r38u31n1000
Hello world from process 2 of 4 on host r38u31n1000
Hello world from process 0 of 4 on host r38u31n1000
### Coprocessor-only model
There are two ways how to execute an MPI code on a single
coprocessor: 1.) lunch the program using "**mpirun**" from the
coprocessor; or 2.) lunch the task using "**mpiexec.hydra**" from a
host.
Execution on coprocessor**
Similarly to execution of OpenMP programs in native mode, since the
environmental module are not supported on MIC, user has to setup paths
to Intel MPI libraries and binaries manually. One time setup can be done
by creating a "**.profile**" file in user's home directory. This file
sets up the environment on the MIC automatically once user access to the
accelerator through the SSH.
At first get the LD_LIBRARY_PATH for currenty used Intel Compiler and
Intel MPI:
$ echo $MIC_LD_LIBRARY_PATH
/apps/all/imkl/11.2.3.187-iimpi-7.3.5-GNU-5.1.0-2.25/mkl/lib/mic:/apps/all/imkl/11.2.3.187-iimpi-7.3.5-GNU-5.1.0-2.25/lib/mic:/apps/all/icc/2015.3.187-GNU-5.1.0-2.25/composer_xe_2015.3.187/compiler/lib/mic/
Use it in your ~/.profile:
$ vim ~/.profile
PS1='[u@h W]$ '
export PATH=/usr/bin:/usr/sbin:/bin:/sbin
#IMPI
export PATH=/apps/all/impi/5.0.3.048-iccifort-2015.3.187-GNU-5.1.0-2.25/mic/bin/:$PATH
#OpenMP (ICC, IFORT), IMKL and IMPI
export LD_LIBRARY_PATH=/apps/all/imkl/11.2.3.187-iimpi-7.3.5-GNU-5.1.0-2.25/mkl/lib/mic:/apps/all/imkl/11.2.3.187-iimpi-7.3.5-GNU-5.1.0-2.25/lib/mic:/apps/all/icc/2015.3.187-GNU-5.1.0-2.25/composer_xe_2015.3.187/compiler/lib/mic:$LD_LIBRARY_PATH
Please note:
- this file sets up both environmental variable for both MPI and OpenMP
libraries.
- this file sets up the paths to a particular version of Intel MPI
library and particular version of an Intel compiler. These versions have
to match with loaded modules.
To access a MIC accelerator located on a node that user is currently
connected to, use:
$ ssh mic0
or in case you need specify a MIC accelerator on a particular node, use:
$ ssh r38u31n1000-mic0
To run the MPI code in parallel on multiple core of the accelerator,
use:
$ mpirun -np 4 ./mpi-test-mic
The output should be similar to:
Hello world from process 1 of 4 on host r38u31n1000-mic0
Hello world from process 2 of 4 on host r38u31n1000-mic0
Hello world from process 3 of 4 on host r38u31n1000-mic0
Hello world from process 0 of 4 on host r38u31n1000-mic0
**
**Execution on host**
If the MPI program is launched from host instead of the coprocessor, the
environmental variables are not set using the ".profile" file. Therefore
user has to specify library paths from the command line when calling
"mpiexec".
First step is to tell mpiexec that the MPI should be executed on a local
accelerator by setting up the environmental variable "I_MPI_MIC"
$ export I_MPI_MIC=1
Now the MPI program can be executed as:
$ mpirun -genv LD_LIBRARY_PATH $MIC_LD_LIBRARY_PATH -host mic0 -n 4 ~/mpi-test-mic
or using mpirun
$ mpirun -genv LD_LIBRARY_PATH $MIC_LD_LIBRARY_PATH -host mic0 -n 4 ~/mpi-test-mic
Please note:
- the full path to the binary has to specified (here:
"**>~/mpi-test-mic**")
- the LD_LIBRARY_PATH has to match with Intel MPI module used to
compile the MPI code
The output should be again similar to:
Hello world from process 1 of 4 on host r38u31n1000-mic0
Hello world from process 2 of 4 on host r38u31n1000-mic0
Hello world from process 3 of 4 on host r38u31n1000-mic0
Hello world from process 0 of 4 on host r38u31n1000-mic0
Please note that the "mpiexec.hydra" requires a file
"**>pmi_proxy**" from Intel MPI library to be copied to the
MIC filesystem. If the file is missing please contact the system
administrators. A simple test to see if the file is present is to
execute:
$ ssh mic0 ls /bin/pmi_proxy
/bin/pmi_proxy
**
**Execution on host - MPI processes distributed over multiple
accelerators on multiple nodes**
To get access to multiple nodes with MIC accelerator, user has to
use PBS to allocate the resources. To start interactive session, that
allocates 2 compute nodes = 2 MIC accelerators run qsub command with
following parameters:
$ qsub -I -q qprod -l select=2:ncpus=24:accelerator=True:naccelerators=2:accelerator_model=phi7120 -A NONE-0-0
$ module load intel impi
This command connects user through ssh to one of the nodes
immediately. To see the other nodes that have been allocated use:
$ cat $PBS_NODEFILE
For example:
r38u31n1000.bullx
r38u32n1001.bullx
This output means that the PBS allocated nodes r38u31n1000 and
r38u32n1001, which means that user has direct access to
"**r38u31n1000-mic0**" and "**>r38u32n1001-mic0**"
accelerators.
Please note: At this point user can connect to any of the
allocated nodes or any of the allocated MIC accelerators using ssh:
- to connect to the second node : ** $
ssh >r38u32n1001**
- to connect to the accelerator on the first node from the first
node: **$ ssh
r38u31n1000-mic0** or **
$ ssh mic0**
-** to connect to the accelerator on the second node from the first
node: **$ ssh
r38u32n1001-mic0**
At this point we expect that correct modules are loaded and binary
is compiled. For parallel execution the mpiexec.hydra is used.
Again the first step is to tell mpiexec that the MPI can be executed on
MIC accelerators by setting up the environmental variable "I_MPI_MIC",
don't forget to have correct FABRIC and PROVIDER defined.
$ export I_MPI_MIC=1
$ export I_MPI_FABRICS=shm:dapl
$ export I_MPI_DAPL_PROVIDER_LIST=ofa-v2-mlx4_0-1u,ofa-v2-scif0,ofa-v2-mcm-1
The launch the MPI program use:
$ mpirun -genv LD_LIBRARY_PATH $MIC_LD_LIBRARY_PATH
-host r38u31n1000-mic0 -n 4 ~/mpi-test-mic
: -host r38u32n1001-mic0 -n 6 ~/mpi-test-mic
or using mpirun:
$ mpirun -genv LD_LIBRARY_PATH
-host r38u31n1000-mic0 -n 4 ~/mpi-test-mic
: -host r38u32n1001-mic0 -n 6 ~/mpi-test-mic
In this case four MPI processes are executed on accelerator
r38u31n1000-mic and six processes are executed on accelerator
r38u32n1001-mic0. The sample output (sorted after execution) is:
Hello world from process 0 of 10 on host r38u31n1000-mic0
Hello world from process 1 of 10 on host r38u31n1000-mic0
Hello world from process 2 of 10 on host r38u31n1000-mic0
Hello world from process 3 of 10 on host r38u31n1000-mic0
Hello world from process 4 of 10 on host r38u32n1001-mic0
Hello world from process 5 of 10 on host r38u32n1001-mic0
Hello world from process 6 of 10 on host r38u32n1001-mic0
Hello world from process 7 of 10 on host r38u32n1001-mic0
Hello world from process 8 of 10 on host r38u32n1001-mic0
Hello world from process 9 of 10 on host r38u32n1001-mic0
The same way MPI program can be executed on multiple hosts:
$ mpirun -genv LD_LIBRARY_PATH $MIC_LD_LIBRARY_PATH
-host r38u31n1000 -n 4 ~/mpi-test
: -host r38u32n1001 -n 6 ~/mpi-test
###Symmetric model
In a symmetric mode MPI programs are executed on both host
computer(s) and MIC accelerator(s). Since MIC has a different
architecture and requires different binary file produced by the Intel
compiler two different files has to be compiled before MPI program is
executed.
In the previous section we have compiled two binary files, one for
hosts "**mpi-test**" and one for MIC accelerators "**mpi-test-mic**".
These two binaries can be executed at once using mpiexec.hydra:
$ mpirun
-genv $MIC_LD_LIBRARY_PATH
-host r38u32n1001 -n 2 ~/mpi-test
: -host r38u32n1001-mic0 -n 2 ~/mpi-test-mic
In this example the first two parameters (line 2 and 3) sets up required
environment variables for execution. The third line specifies binary
that is executed on host (here r38u32n1001) and the last line specifies
the binary that is execute on the accelerator (here r38u32n1001-mic0).
The output of the program is:
Hello world from process 0 of 4 on host r38u32n1001
Hello world from process 1 of 4 on host r38u32n1001
Hello world from process 2 of 4 on host r38u32n1001-mic0
Hello world from process 3 of 4 on host r38u32n1001-mic0
The execution procedure can be simplified by using the mpirun
command with the machine file a a parameter. Machine file contains list
of all nodes and accelerators that should used to execute MPI processes.
An example of a machine file that uses 2 >hosts (r38u32n1001
and r38u33n1002) and 2 accelerators **(r38u32n1001-mic0** and
r38u33n1002-mic0**) to run 2 MPI processes