Skip to content
Snippets Groups Projects
mpi4py-mpi-for-python.md 2.65 KiB
Newer Older
  • Learn to ignore specific revisions
  • Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    MPI4Py (MPI for Python)
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    =======================
    
    Introduction
    ------------
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    MPI for Python provides bindings of the Message Passing Interface (MPI) standard for the Python programming language, allowing any Python program to exploit multiple processors.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    This package is constructed on top of the MPI-1/2 specifications and provides an object oriented interface which closely follows MPI-2 C++ bindings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers) communications of any picklable Python object, as well as optimized communications of Python object exposing the single-segment buffer interface (NumPy arrays, builtin bytes/string/array objects).
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    On Anselm MPI4Py is available in standard Python modules.
    
    Modules
    -------
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    MPI4Py is build for OpenMPI. Before you start with MPI4Py you need to load Python and OpenMPI modules.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        $ module load python
        $ module load openmpi
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    Execution
    ---------
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    You need to import MPI to your python program. Include the following line to the python script:
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```cpp
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        from mpi4py import MPI
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    The MPI4Py enabled python programs [execute as any other OpenMPI](Running_OpenMPI/) code.The simpliest way is to run
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        $ mpiexec python <script>.py
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    For example
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        $ mpiexec python hello_world.py
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    Examples
    --------
    
    ### Hello world!
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```cpp
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        from mpi4py import MPI
    
        comm = MPI.COMM_WORLD
    
        print "Hello! I'm rank %d from %d running in total..." % (comm.rank, comm.size)
    
    
    David Hrbáč's avatar
    David Hrbáč committed
        comm.Barrier()   # wait for everybody to synchronize
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    ###Collective Communication with NumPy arrays
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```cpp
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        from mpi4py import MPI
        from __future__ import division
        import numpy as np
    
        comm = MPI.COMM_WORLD
    
        print("-"*78)
        print(" Running on %d cores" % comm.size)
        print("-"*78)
    
        comm.Barrier()
    
        # Prepare a vector of N=5 elements to be broadcasted...
        N = 5
        if comm.rank == 0:
    
    David Hrbáč's avatar
    David Hrbáč committed
            A = np.arange(N, dtype=np.float64)    # rank 0 has proper data
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        else:
    
    David Hrbáč's avatar
    David Hrbáč committed
            A = np.empty(N, dtype=np.float64)     # all other just an empty array
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
        # Broadcast A from rank 0 to everybody
        comm.Bcast( [A, MPI.DOUBLE] )
    
        # Everybody should now have the same...
        print "[%02d] %s" % (comm.rank, A)
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    Execute the above code as:
    
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```bash
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
        $ qsub -q qexp -l select=4:ncpus=16:mpiprocs=16:ompthreads=1 -I
    
        $ module load python openmpi
    
        $ mpiexec -bycore -bind-to-core python hello_world.py
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    ```
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    
    Pavel Jirásek's avatar
    Pavel Jirásek committed
    In this example, we run MPI4Py enabled code on 4 nodes, 16 cores per node (total of 64 processes), each python process is bound to a different core. More examples and documentation can be found on [MPI for Python webpage](https://pypi.python.org/pypi/mpi4py).