Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#include "cs_demo.h"
#include <time.h>
/* 1 if A is square & upper tri., -1 if square & lower tri., 0 otherwise */
static csi is_sym (cs *A)
{
csi is_upper, is_lower, j, p, n = A->n, m = A->m, *Ap = A->p, *Ai = A->i ;
if (m != n) return (0) ;
is_upper = 1 ;
is_lower = 1 ;
for (j = 0 ; j < n ; j++)
{
for (p = Ap [j] ; p < Ap [j+1] ; p++)
{
if (Ai [p] > j) is_upper = 0 ;
if (Ai [p] < j) is_lower = 0 ;
}
}
return (is_upper ? 1 : (is_lower ? -1 : 0)) ;
}
/* true for off-diagonal entries */
static csi dropdiag (csi i, csi j, double aij, void *other) { return (i != j) ;}
/* C = A + triu(A,1)' */
static cs *make_sym (cs *A)
{
cs *AT, *C ;
AT = cs_transpose (A, 1) ; /* AT = A' */
cs_fkeep (AT, &dropdiag, NULL) ; /* drop diagonal entries from AT */
C = cs_add (A, AT, 1, 1) ; /* C = A+AT */
cs_spfree (AT) ;
return (C) ;
}
/* create a right-hand side */
static void rhs (double *x, double *b, csi m)
{
csi i ;
for (i = 0 ; i < m ; i++) b [i] = 1 + ((double) i) / m ;
for (i = 0 ; i < m ; i++) x [i] = b [i] ;
}
/* infinity-norm of x */
static double norm (double *x, csi n)
{
csi i ;
double normx = 0 ;
for (i = 0 ; i < n ; i++) normx = CS_MAX (normx, fabs (x [i])) ;
return (normx) ;
}
/* compute residual, norm(A*x-b,inf) / (norm(A,1)*norm(x,inf) + norm(b,inf)) */
static void print_resid (csi ok, cs *A, double *x, double *b, double *resid)
{
csi i, m, n ;
if (!ok) { printf (" (failed)\n") ; return ; }
m = A->m ; n = A->n ;
for (i = 0 ; i < m ; i++) resid [i] = -b [i] ; /* resid = -b */
cs_gaxpy (A, x, resid) ; /* resid = resid + A*x */
printf ("resid: %8.2e\n", norm (resid,m) / ((n == 0) ? 1 :
(cs_norm (A) * norm (x,n) + norm (b,m)))) ;
}
static double tic (void) { return (clock () / (double) CLOCKS_PER_SEC) ; }
static double toc (double t) { double s = tic () ; return (CS_MAX (0, s-t)) ; }
static void print_order (csi order)
{
switch (order)
{
case 0: printf ("natural ") ; break ;
case 1: printf ("amd(A+A') ") ; break ;
case 2: printf ("amd(S'*S) ") ; break ;
case 3: printf ("amd(A'*A) ") ; break ;
}
}
/* read a problem from a file; use %g for integers to avoid csi conflicts */
problem *get_problem (FILE *f, double tol)
{
cs *T, *A, *C ;
csi sym, m, n, mn, nz1, nz2 ;
problem *Prob ;
Prob = cs_calloc (1, sizeof (problem)) ;
if (!Prob) return (NULL) ;
T = cs_load (f) ; /* load triplet matrix T from a file */
Prob->A = A = cs_compress (T) ; /* A = compressed-column form of T */
cs_spfree (T) ; /* clear T */
if (!cs_dupl (A)) return (free_problem (Prob)) ; /* sum up duplicates */
Prob->sym = sym = is_sym (A) ; /* determine if A is symmetric */
m = A->m ; n = A->n ;
mn = CS_MAX (m,n) ;
nz1 = A->p [n] ;
cs_dropzeros (A) ; /* drop zero entries */
nz2 = A->p [n] ;
if (tol > 0) cs_droptol (A, tol) ; /* drop tiny entries (just to test) */
Prob->C = C = sym ? make_sym (A) : A ; /* C = A + triu(A,1)', or C=A */
if (!C) return (free_problem (Prob)) ;
printf ("\n--- Matrix: %g-by-%g, nnz: %g (sym: %g: nnz %g), norm: %8.2e\n",
(double) m, (double) n, (double) (A->p [n]), (double) sym,
(double) (sym ? C->p [n] : 0), cs_norm (C)) ;
if (nz1 != nz2) printf ("zero entries dropped: %g\n", (double) (nz1 - nz2));
if (nz2 != A->p [n]) printf ("tiny entries dropped: %g\n",
(double) (nz2 - A->p [n])) ;
Prob->b = cs_malloc (mn, sizeof (double)) ;
Prob->x = cs_malloc (mn, sizeof (double)) ;
Prob->resid = cs_malloc (mn, sizeof (double)) ;
return ((!Prob->b || !Prob->x || !Prob->resid) ? free_problem (Prob) : Prob) ;
}
/* free a problem */
problem *free_problem (problem *Prob)
{
if (!Prob) return (NULL) ;
cs_spfree (Prob->A) ;
if (Prob->sym) cs_spfree (Prob->C) ;
cs_free (Prob->b) ;
cs_free (Prob->x) ;
cs_free (Prob->resid) ;
return (cs_free (Prob)) ;
}
/* solve a linear system using Cholesky, LU, and QR, with various orderings */
csi demo2 (problem *Prob)
{
cs *A, *C ;
double *b, *x, *resid, t, tol ;
csi k, m, n, ok, order, nb, ns, *r, *s, *rr, sprank ;
csd *D ;
if (!Prob) return (0) ;
A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid;
m = A->m ; n = A->n ;
tol = Prob->sym ? 0.001 : 1 ; /* partial pivoting tolerance */
D = cs_dmperm (C, 1) ; /* randomized dmperm analysis */
if (!D) return (0) ;
nb = D->nb ; r = D->r ; s = D->s ; rr = D->rr ;
sprank = rr [3] ;
for (ns = 0, k = 0 ; k < nb ; k++)
{
ns += ((r [k+1] == r [k]+1) && (s [k+1] == s [k]+1)) ;
}
printf ("blocks: %g singletons: %g structural rank: %g\n",
(double) nb, (double) ns, (double) sprank) ;
cs_dfree (D) ;
for (order = 0 ; order <= 3 ; order += 3) /* natural and amd(A'*A) */
{
if (!order && m > 1000) continue ;
printf ("QR ") ;
print_order (order) ;
rhs (x, b, m) ; /* compute right-hand side */
t = tic () ;
ok = cs_qrsol (order, C, x) ; /* min norm(Ax-b) with QR */
printf ("time: %8.2f ", toc (t)) ;
print_resid (ok, C, x, b, resid) ; /* print residual */
}
if (m != n || sprank < n) return (1) ; /* return if rect. or singular*/
for (order = 0 ; order <= 3 ; order++) /* try all orderings */
{
if (!order && m > 1000) continue ;
printf ("LU ") ;
print_order (order) ;
rhs (x, b, m) ; /* compute right-hand side */
t = tic () ;
ok = cs_lusol (order, C, x, tol) ; /* solve Ax=b with LU */
printf ("time: %8.2f ", toc (t)) ;
print_resid (ok, C, x, b, resid) ; /* print residual */
}
if (!Prob->sym) return (1) ;
for (order = 0 ; order <= 1 ; order++) /* natural and amd(A+A') */
{
if (!order && m > 1000) continue ;
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
rhs (x, b, m) ; /* compute right-hand side */
t = tic () ;
ok = cs_cholsol (order, C, x) ; /* solve Ax=b with Cholesky */
printf ("time: %8.2f ", toc (t)) ;
print_resid (ok, C, x, b, resid) ; /* print residual */
}
return (1) ;
}
/* free workspace for demo3 */
static csi done3 (csi ok, css *S, csn *N, double *y, cs *W, cs *E, csi *p)
{
cs_sfree (S) ;
cs_nfree (N) ;
cs_free (y) ;
cs_spfree (W) ;
cs_spfree (E) ;
cs_free (p) ;
return (ok) ;
}
/* Cholesky update/downdate */
csi demo3 (problem *Prob)
{
cs *A, *C, *W = NULL, *WW, *WT, *E = NULL, *W2 ;
csi n, k, *Li, *Lp, *Wi, *Wp, p1, p2, *p = NULL, ok ;
double *b, *x, *resid, *y = NULL, *Lx, *Wx, s, t, t1 ;
css *S = NULL ;
csn *N = NULL ;
if (!Prob || !Prob->sym || Prob->A->n == 0) return (0) ;
A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid;
n = A->n ;
if (!Prob->sym || n == 0) return (1) ;
rhs (x, b, n) ; /* compute right-hand side */
printf ("\nchol then update/downdate ") ;
print_order (1) ;
y = cs_malloc (n, sizeof (double)) ;
t = tic () ;
S = cs_schol (1, C) ; /* symbolic Chol, amd(A+A') */
printf ("\nsymbolic chol time %8.2f\n", toc (t)) ;
t = tic () ;
N = cs_chol (C, S) ; /* numeric Cholesky */
printf ("numeric chol time %8.2f\n", toc (t)) ;
if (!S || !N || !y) return (done3 (0, S, N, y, W, E, p)) ;
t = tic () ;
cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */
cs_lsolve (N->L, y) ; /* y = L\y */
cs_ltsolve (N->L, y) ; /* y = L'\y */
cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */
printf ("solve chol time %8.2f\n", toc (t)) ;
printf ("original: ") ;
print_resid (1, C, x, b, resid) ; /* print residual */
k = n/2 ; /* construct W */
W = cs_spalloc (n, 1, n, 1, 0) ;
if (!W) return (done3 (0, S, N, y, W, E, p)) ;
Lp = N->L->p ; Li = N->L->i ; Lx = N->L->x ;
Wp = W->p ; Wi = W->i ; Wx = W->x ;
Wp [0] = 0 ;
p1 = Lp [k] ;
Wp [1] = Lp [k+1] - p1 ;
s = Lx [p1] ;
srand (1) ;
for ( ; p1 < Lp [k+1] ; p1++)
{
p2 = p1 - Lp [k] ;
Wi [p2] = Li [p1] ;
Wx [p2] = s * rand () / ((double) RAND_MAX) ;
}
t = tic () ;
ok = cs_updown (N->L, +1, W, S->parent) ; /* update: L*L'+W*W' */
t1 = toc (t) ;
printf ("update: time: %8.2f\n", t1) ;
if (!ok) return (done3 (0, S, N, y, W, E, p)) ;
t = tic () ;
cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */
cs_lsolve (N->L, y) ; /* y = L\y */
cs_ltsolve (N->L, y) ; /* y = L'\y */
cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */
t = toc (t) ;
p = cs_pinv (S->pinv, n) ;
W2 = cs_permute (W, p, NULL, 1) ; /* E = C + (P'W)*(P'W)' */
WT = cs_transpose (W2,1) ;
WW = cs_multiply (W2, WT) ;
cs_spfree (WT) ;
cs_spfree (W2) ;
E = cs_add (C, WW, 1, 1) ;
cs_spfree (WW) ;
if (!E || !p) return (done3 (0, S, N, y, W, E, p)) ;
printf ("update: time: %8.2f (incl solve) ", t1+t) ;
print_resid (1, E, x, b, resid) ; /* print residual */
cs_nfree (N) ; /* clear N */
t = tic () ;
N = cs_chol (E, S) ; /* numeric Cholesky */
if (!N) return (done3 (0, S, N, y, W, E, p)) ;
cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */
cs_lsolve (N->L, y) ; /* y = L\y */
cs_ltsolve (N->L, y) ; /* y = L'\y */
cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */
t = toc (t) ;
printf ("rechol: time: %8.2f (incl solve) ", t) ;
print_resid (1, E, x, b, resid) ; /* print residual */
t = tic () ;
ok = cs_updown (N->L, -1, W, S->parent) ; /* downdate: L*L'-W*W' */
t1 = toc (t) ;
if (!ok) return (done3 (0, S, N, y, W, E, p)) ;
printf ("downdate: time: %8.2f\n", t1) ;
t = tic () ;
cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */
cs_lsolve (N->L, y) ; /* y = L\y */
cs_ltsolve (N->L, y) ; /* y = L'\y */
cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */
t = toc (t) ;
printf ("downdate: time: %8.2f (incl solve) ", t1+t) ;
print_resid (1, C, x, b, resid) ; /* print residual */
return (done3 (1, S, N, y, W, E, p)) ;
}