Skip to content
Snippets Groups Projects
cs_lsolve.c 2.85 KiB
Newer Older
  • Learn to ignore specific revisions
  • Lubomir Riha's avatar
    Lubomir Riha committed
    #include "cs.h"
    /* solve Lx=b where x and b are dense.  x=b on input, solution on output. */
    csi cs_lsolve (const cs *L, double *x)
    {
        csi p, j, n, *Lp, *Li ;
        double *Lx ;
        if (!CS_CSC (L) || !x) return (0) ;                     /* check inputs */
        n = L->n ; Lp = L->p ; Li = L->i ; Lx = L->x ;
        for (j = 0 ; j < n ; j++)
        {
            x [j] /= Lx [Lp [j]] ;
            for (p = Lp [j]+1 ; p < Lp [j+1] ; p++)
            {
                x [Li [p]] -= Lx [p] * x [j] ;
            }
        }
        return (1) ;
    }
    
    
    /* solve Lx=b where x and b are dense.  x=b on input, solution on output. */
    
    //csi cs_lsolve_gpu (const cs *L, double *x)
    // typedef struct cs_sparse    /* matrix in compressed-column or triplet form */
    // {
    //     csi nzmax ;     /* maximum number of entries */
    //     csi m ;         /* number of rows */
    //     csi n ;         /* number of columns */
    //     csi *p ;        /* column pointers (size n+1) or col indices (size nzmax) */
    //     csi *i ;        /* row indices, size nzmax */
    //     double *x ;     /* numerical values, size nzmax */
    //     csi nz ;        /* # of entries in triplet matrix, -1 for compressed-col */
    // } cs ;
    
    __global__
    void cs_lsolve_gpu (int n, const int *Lp, const int *Li, const double *Lx, double *x)
    {
        int p, j;
        
        // double *Lx ;
        // n = L->n ; 
        // Lp = L->p ; 
        // Li = L->i ; 
        // Lx = L->x ;
        
        for (j = 0 ; j < n ; j++)
        {
            x [j] /= Lx [Lp [j]] ;
            for (p = Lp [j]+1 ; p < Lp [j+1] ; p++)
            {
                x [Li [p]] -= Lx [p] * x [j] ;
            }
        }
        
        return (1) ;
    }
    
    
        
    
    
    #include <iostream>
    #include <math.h>
     
    // CUDA kernel to add elements of two arrays
    __global__
    void add(int n, float *x, float *y)
    {
      int index = blockIdx.x * blockDim.x + threadIdx.x;
      int stride = blockDim.x * gridDim.x;
      for (int i = index; i < n; i += stride)
        y[i] = x[i] + y[i];
    }
     
    int main(void)
    {
      int N = 1<<20;
      float *x, *y;
     
      // Allocate Unified Memory -- accessible from CPU or GPU
      cudaMallocManaged(&x, N*sizeof(float));
      cudaMallocManaged(&y, N*sizeof(float));
     
      // initialize x and y arrays on the host
      for (int i = 0; i < N; i++) {
        x[i] = 1.0f;
        y[i] = 2.0f;
      }
     
    
    
        // Prefetch the data to the GPU
      int device = -1;
      cudaGetDevice(&device);
      cudaMemPrefetchAsync(x, N*sizeof(float), device, NULL);
      cudaMemPrefetchAsync(y, N*sizeof(float), device, NULL);
    
    
      // Launch kernel on 1M elements on the GPU
      int blockSize = 256;
      int numBlocks = (N + blockSize - 1) / blockSize;
      add<<<numBlocks, blockSize>>>(N, x, y);
     
      // Wait for GPU to finish before accessing on host
      cudaDeviceSynchronize();
     
      // Check for errors (all values should be 3.0f)
      float maxError = 0.0f;
      for (int i = 0; i < N; i++)
        maxError = fmax(maxError, fabs(y[i]-3.0f));
      std::cout << "Max error: " << maxError << std::endl;
     
      // Free memory
      cudaFree(x);
      cudaFree(y);
     
      return 0;
    }