Skip to content
Snippets Groups Projects
net_test_3.cpp 3.96 KiB
Newer Older
  • Learn to ignore specific revisions
  • Michal Kravcenko's avatar
    Michal Kravcenko committed
    /**
     * Example of a set of neural networks sharing some edge weights
    
     * The system of equations associated with the net in this example is not regular
     * minimizes the function: [(2y+0.5)^2 + (2x+y+0.25)^2] / 2 + [(4.5x + 0.37)^2] / 1
    
     * minimum [0.010024714] at (x, y) = (-333/4370, -9593/43700) = (-0.076201373, -0.219519451)
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
    //
    // Created by martin on 7/16/18.
    //
    
    #include <vector>
    
    #include "../include/4neuro.h"
    
    int main() {
    
        /* TRAIN DATA DEFINITION */
        std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_01, data_vec_02;
        std::vector<double> inp, out;
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        data_vec_01.emplace_back(std::make_pair(inp, out));
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        data_vec_01.emplace_back(std::make_pair(inp, out));
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
    
        inp = {1.25};
        out = {0.63};
        data_vec_02.emplace_back(std::make_pair(inp, out));
        DataSet ds_02(&data_vec_02);
    
        /* NETWORK DEFINITION */
        NeuralNetwork net;
    
        /* Input neurons */
        NeuronLinear *i1 = new NeuronLinear(0.0, 1.0);  //f(x) = x
        NeuronLinear *i2 = new NeuronLinear(0.0, 1.0);  //f(x) = x
    
        NeuronLinear *i3 = new NeuronLinear(1, 1); //f(x) = x + 1
    
        /* Output neurons */
        NeuronLinear *o1 = new NeuronLinear(1.0, 2.0);  //f(x) = 2x + 1
        NeuronLinear *o2 = new NeuronLinear(1, 2);  //f(x) = 2x + 1
    
    
    
        /* Adding neurons to the nets */
        int idx1 = net.add_neuron(i1);
        int idx2 = net.add_neuron(i2);
        int idx3 = net.add_neuron(o1);
        int idx4 = net.add_neuron(i3);
        int idx5 = net.add_neuron(o2);
    
        /* Adding connections */
        //net.add_connection_simple(idx1, idx3, -1, 1.0);
        //net.add_connection_simple(idx2, idx3, -1, 1.0);
        net.add_connection_simple(idx1, idx3); // weight index 0
        net.add_connection_simple(idx2, idx3); // weight index 1
        net.add_connection_simple(idx4, idx5, 0); // AGAIN weight index 0 - same weight!
    
        net.randomize_weights();
    
        /* specification of the input/output neurons */
        std::vector<size_t> net_input_neurons_indices(3);
        std::vector<size_t> net_output_neurons_indices(2);
        net_input_neurons_indices[0] = idx1;
        net_input_neurons_indices[1] = idx2;
        net_input_neurons_indices[2] = idx4;
    
        net_output_neurons_indices[0] = idx3;
        net_output_neurons_indices[1] = idx5;
    
        net.specify_input_neurons(net_input_neurons_indices);
        net.specify_output_neurons(net_output_neurons_indices);
    
    
        /* CONSTRUCTION OF SUBNETWORKS */
    
        //TODO subnetworks retain the number of weights, could be optimized to include only the used weights
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        std::vector<size_t> subnet_01_input_neurons, subnet_01_output_neurons;
        std::vector<size_t> subnet_02_input_neurons, subnet_02_output_neurons;
    
        subnet_01_input_neurons.push_back(idx1);
        subnet_01_input_neurons.push_back(idx2);
        subnet_01_output_neurons.push_back(idx3);
        NeuralNetwork *subnet_01 = net.get_subnet(subnet_01_input_neurons, subnet_01_output_neurons);
    
        subnet_02_input_neurons.push_back(idx4);
        subnet_02_output_neurons.push_back(idx5);
        NeuralNetwork *subnet_02 = net.get_subnet(subnet_02_input_neurons, subnet_02_output_neurons);
    
        /* COMPLEX ERROR FUNCTION SPECIFICATION */
        MSE mse_01(subnet_01, &ds_01);
        MSE mse_02(subnet_02, &ds_02);
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        ErrorSum mse_sum;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        mse_sum.add_error_function( &mse_01 );
        mse_sum.add_error_function( &mse_02 );
    
        /* TRAINING METHOD SETUP */
    
        unsigned int max_iters = 50;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
    
        //must encapsulate each of the partial error functions
        double domain_bounds[4] = {-800.0, 800.0, -800.0, 800.0};
    
        double c1 = 0.5, c2 = 1.5, w = 0.8;
    
    
    //    printf("mse2: %d\n", mse_02.get_dimension());
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        ParticleSwarm swarm_01(&mse_sum, domain_bounds, c1, c2, w, n_particles, max_iters);
    
    
    //    double weights[2] = {0, -0.25};
    //    printf("evaluation of error at (x, y) = (%f, %f): %f\n", weights[0], weights[1], mse_01.eval(weights));
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
        delete subnet_02;
        delete subnet_01;
        return 0;
    }