Skip to content
Snippets Groups Projects
simulator.cpp 6.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • //
    // Created by martin on 25.11.18.
    //
    
    
    #include <iostream>
    #include <cstdio>
    #include <fstream>
    #include <vector>
    #include <utility>
    #include <algorithm>
    #include <assert.h>
    
    #include "4neuro.h"
    
    
    int main(int argc, char** argv) {
    
        bool normalize_data = true;
        double prec = 1e-9;
    
        int restart_interval = 500;
        int max_n_iters_gradient = 10000;
    
        int max_n_iters_gradient_lm = 10000;
    
        int max_n_iters_swarm = 20;
        int n_particles_swarm = 200;
    
        int batch_size = 0;
    
        try {
            /* PHASE 1 - TRAINING DATA LOADING, NETWORK ASSEMBLY AND PARTICLE SWARM OPTIMIZATION */
    
            l4n::CSVReader reader1("/home/fluffymoo/Dropbox/data_BACK_RH_1.csv", ";", true);  // File, separator, skip 1st line
    
            reader1.read();  // Read from the file
    
            /* PHASE 1 - NEURAL NETWORK SPECIFICATION */
            /* Create data set for both the first training of the neural network */
            /* Specify which columns are inputs or outputs */
    
            std::vector<unsigned int> inputs = { 0 };  // Possible multiple inputs, e.g. {0,3}, column indices starting from 0
            std::vector<unsigned int> outputs = { 2 };  // Possible multiple outputs, e.g. {1,2}
            l4n::DataSet ds1 = reader1.get_data_set(&inputs, &outputs);  // Creation of data-set for NN
            if(normalize_data){
                ds1.normalize();  // Normalization of data to prevent numerical problems
            }
    
    
            /* Numbers of neurons in layers (including input and output layers) */
    
            std::vector<unsigned int> neuron_numbers_in_layers = { 1, 6, 6, 1 };
    
    
            /* Fully connected feed-forward network with linear activation functions for input and output */
            /* layers and the specified activation fns for the hidden ones (each entry = layer)*/
    
            std::vector<l4n::NEURON_TYPE> hidden_type_v = { l4n::NEURON_TYPE::LOGISTIC, l4n::NEURON_TYPE::LOGISTIC, l4n::NEURON_TYPE::LOGISTIC, l4n::NEURON_TYPE::LOGISTIC, l4n::NEURON_TYPE::LOGISTIC }; // hidden_type_v = {l4n::NEURON_TYPE::LOGISTIC, l4n::NEURON_TYPE::LINEAR}
    
            l4n::FullyConnectedFFN nn1(&neuron_numbers_in_layers, &hidden_type_v);
    
            /* Error function */
    
            l4n::MSE mse1(&nn1, &ds1);  // First parameter - neural network, second parameter - data-set
    
            /* Particle Swarm method domain*/
            std::vector<double> domain_bounds(2 * (nn1.get_n_weights() + nn1.get_n_biases()));
            for (size_t i = 0; i < domain_bounds.size() / 2; ++i) {
    
                domain_bounds[2 * i] = -0.1;
                domain_bounds[2 * i + 1] = 0.1;
    
            // Parameters of the Particle Swarm
    
            // 1) domain_bounds Bounds for every optimized parameter (p1_lower, p1_upper, p2_lower, p2_upper...)
            // 2) c1 Cognitive parameter
            // 3) c2 Social parameter
            // 4) w Inertia weight
            // 5) gamma Threshold value for particle velocity - all particles must posses the same or slower velocity for the algorithm to end
            // 6) epsilon Radius of the cluster area (Euclidean distance)
            // 7) delta Amount of particles, which has to be in the cluster for the algorithm to stop (0-1)
            // 8) n_particles Number of particles in the swarm
            // 9) iter_max Maximal number of iterations - optimization will stop after that, even if not converged
    
            l4n::ParticleSwarm ps(&domain_bounds,
                                  1.711897,
                                  1.711897,
                                  0.711897,
                                  0.5,
                                  0.3,
                                  0.7,
    
                                  n_particles_swarm,
                                  max_n_iters_swarm);
    
            // Parameters of the gradient descent
    
            // 1) Threshold for the successful ending of the optimization - deviation from minima
            // 2) Number of iterations to reset step size to tolerance/10.0
            // 3) Maximal number of iterations - optimization will stop after that, even if not converged
    
            l4n::GradientDescent gs_(prec, restart_interval, max_n_iters_gradient, batch_size);
    
            l4n::GradientDescentBB gs(prec, restart_interval, max_n_iters_gradient, batch_size);
    
            l4n::GradientDescentSingleItem gs_si(prec, 0, 5000);//TODO needs improvement
            l4n::LevenbergMarquardt leven(max_n_iters_gradient_lm, prec_lm);
    
            l4n::LearningSequence learning_sequence( 1e-6, max_number_of_cycles );
    
            learning_sequence.add_learning_method( &ps );
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    //        learning_sequence.add_learning_method( &gs );
            learning_sequence.add_learning_method( &leven );
    
    //        learning_sequence.add_learning_method( &gs_ );
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    //        learning_sequence.add_learning_method( &gs_si );
    //        learning_sequence.add_learning_method( &gs );
    
    
            /* Weight and bias randomization in the network accordingly to the uniform distribution */
            nn1.randomize_parameters();
    
            /* Complex Optimization */
            learning_sequence.optimize(mse1);  // Network training
    
            /* Save Neural network parameters to file */
    
            nn1.save_text("test_net_Gradient_Descent.4n");
    
            /* PHASE 4 - TESTING DATA */
    
    //        /* Output file specification */
    
            std::string filename = "simulator_output.txt";
            std::ofstream output_file(filename);
            if (!output_file.is_open()) {
                throw std::runtime_error("File '" + filename + "' can't be opened!");
            }
    
    //
    //        /* Neural network loading */
    
            l4n::NeuralNetwork nn3("test_net_Gradient_Descent.4n");
    
            /* Check of the saved network - write to the file */
            output_file << std::endl << "The loaded network info:" << std::endl;
            nn3.write_stats(&output_file);
            nn3.write_weights(&output_file);
            nn3.write_biases(&output_file);
    
    //
    //        /* Evaluate network on an arbitrary data-set and save results into the file */
    
            l4n::CSVReader reader3("/home/fluffymoo/Dropbox/data_BACK_RH_1.csv", ";", true);  // File, separator, skip 1st line
    
            reader3.read();  // Read from the file
    
    //
    //        /* Create data set for both the testing of the neural network */
    //        /* Specify which columns are inputs or outputs */
    //
            l4n::DataSet ds3 = reader3.get_data_set(&inputs, &outputs);  // Creation of data-set for NN
            if(normalize_data){
                ds3.normalize();  // Normalization of data to prevent numerical problems
            }
    //
    //        output_file << std::endl << "Evaluating network on the dataset: " << std::endl;
    //        ds3.store_data_text(&output_file);
    //
    
            output_file << "Output and the error:" << std::endl;
    
    //
    //        /* Error function */
    
            l4n::MSE mse3(&nn3, &ds3);  // First parameter - neural network, second parameter - data-set
    
    
            mse3.eval_on_data_set(&ds3, &output_file, nullptr, normalize_data, true);
    
    
            /* Close the output file for writing */
            output_file.close();
    
        }
        catch (const std::exception& e) {