Newer
Older
//
// Created by martin on 7/15/18.
//
#ifndef INC_4NEURO_ERRORFUNCTION_H
#define INC_4NEURO_ERRORFUNCTION_H
kra568
committed
#include "../settings.h"
#include "../Network/NeuralNetwork.h"
#include "../DataSet/DataSet.h"
Martin Beseda
committed
Martin Beseda
committed
namespace lib4neuro {
enum ErrorFunctionType {
ErrorFuncMSE
};
class ErrorFunction {
public:
/**
*
* @param weights
* @return
*/
virtual double eval(std::vector<double> *weights = nullptr) = 0;
Martin Beseda
committed
/**
*
* @return
*/
LIB4NEURO_API virtual size_t get_dimension();
/**
*
* @param params
* @param grad
Martin Beseda
committed
* @param alpha
* @param batch
Martin Beseda
committed
calculate_error_gradient(std::vector<double> ¶ms,
std::vector<double> &grad,
double alpha = 1.0,
size_t batch = 0) = 0;
/**
*
* @return
*/
virtual std::vector<double> *get_parameters() = 0;
/**
* //TODO delete after gradient learning is debugged
* @return
*/
virtual DataSet* get_dataset() = 0;
/**
*
* @return
*/
NeuralNetwork* get_network_instance();
/**
*
* @param percent_train
* @return
*/
void divide_data_train_test(double percent_test);
/**
*
*/
void return_full_data_set_for_training();
/**
*
*/
virtual double eval_on_test_data(std::vector<double>* weights = nullptr) = 0;
Martin Beseda
committed
protected:
/**
*
*/
size_t dimension = 0;
NeuralNetwork* net = nullptr;
/**
*
*/
DataSet* ds = nullptr;
/**
*
*/
DataSet* ds_full = nullptr;
/**
*
*/
DataSet* ds_test = nullptr;
Martin Beseda
committed
};
class MSE : public ErrorFunction {
public:
/**
* Constructor for single neural network
* @param net
* @param ds
*/
LIB4NEURO_API MSE(NeuralNetwork *net, DataSet *ds);
/**
*
* @param weights
* @return
*/
LIB4NEURO_API double eval(std::vector<double> *weights = nullptr) override;
/**
*
* @param params
* @param grad
Martin Beseda
committed
* @param alpha
* @param batch
Martin Beseda
committed
calculate_error_gradient(std::vector<double> ¶ms,
std::vector<double> &grad,
double alpha = 1.0,
size_t batch = 0) override;
/**
*
* @return
*/
LIB4NEURO_API std::vector<double> *get_parameters() override;
LIB4NEURO_API DataSet *get_dataset() override {
return this->ds;
};
Martin Beseda
committed
LIB4NEURO_API double eval_on_test_data(std::vector<double> *weights = nullptr) override;
Martin Beseda
committed
private:
double eval_general(DataSet* data_set, std::vector<double>* weights = nullptr);
Martin Beseda
committed
};
class ErrorSum : public ErrorFunction {
public:
/**
*
*/
LIB4NEURO_API ErrorSum();
/**
*
*/
LIB4NEURO_API ~ErrorSum();
/**
*
* @param weights
* @return
*/
LIB4NEURO_API double eval(std::vector<double> *weights = nullptr) override;
Martin Beseda
committed
/**
*
* @param weights
* @return
*/
LIB4NEURO_API double eval_on_test_data(std::vector<double> *weights = nullptr) override;
Martin Beseda
committed
/**
*
* @param F
*/
LIB4NEURO_API void add_error_function(ErrorFunction *F, double alpha = 1.0);
/**
*
* @return
*/
LIB4NEURO_API size_t get_dimension() override;
/**
*
* @param params
* @param grad
Martin Beseda
committed
* @param alpha
* @param batch
Martin Beseda
committed
calculate_error_gradient(std::vector<double> ¶ms,
std::vector<double> &grad,
double alpha = 1.0,
size_t batch = 0) override;
/**
*
* @return
*/
LIB4NEURO_API std::vector<double> *get_parameters() override;
LIB4NEURO_API DataSet *get_dataset() override {
return this->summand->at(0)->get_dataset();
};
Martin Beseda
committed
private:
std::vector<ErrorFunction *> *summand;
std::vector<double> *summand_coefficient;
};
}
#endif //INC_4NEURO_ERRORFUNCTION_H