Skip to content
Snippets Groups Projects
net_test_harmonic_oscilator.cpp 5.94 KiB
Newer Older
  • Learn to ignore specific revisions
  • /**
     * Example solving the eigenvalue problem:
     *
     *
     *
     * @author Michal Kravčenko
     * @date 3.9.18 -
     */
    
    #include <random>
    #include <iostream>
    #include <fstream>
    
    
    void export_solution( size_t n_test_points, double te, double ts, l4n::DESolver &solver, l4n::MultiIndex &alpha, const std::string prefix ){
        l4n::NeuralNetwork *solution = solver.get_solution( alpha );
    
        char buff[256];
        sprintf( buff, "%sdata_1d_osc.txt", prefix.c_str() );
        std::string final_fn( buff );
    
        std::ofstream ofs(final_fn, std::ofstream::out);
        printf("Exporting files '%s': %7.3f%%\r", final_fn.c_str(), 0.0);
        double frac = (te - ts) / (n_test_points - 1), x;
    
        for(size_t i = 0; i < n_test_points; ++i){
            x = frac * i + ts;
    
            inp[0] = x;
            solution->eval_single(inp, out);
            ofs << i + 1 << " " << x << " " << out[0] << " " << std::endl;
    
            printf("Exporting files '%s': %7.3f%%\r", final_fn.c_str(), (100.0 * i) / (n_test_points - 1));
            std::cout.flush();
    
        printf("Exporting files '%s': %7.3f%%\n", final_fn.c_str(), 100.0);
        std::cout.flush();
        ofs.close();
    }
    
    void optimize_via_particle_swarm( l4n::DESolver &solver, l4n::MultiIndex &alpha, size_t  max_iters, size_t n_particles ){
    
        printf("Solution via the particle swarm optimization!\n");
        std::vector<double> domain_bounds(2 * (solver.get_solution( alpha )->get_n_biases() + solver.get_solution( alpha )->get_n_weights()));
    
    
        for(size_t i = 0; i < domain_bounds.size() / 2; ++i){
            domain_bounds[2 * i] = -10;
            domain_bounds[2 * i + 1] = 10;
    
        double c1 = 1.7;
        double c2 = 1.7;
        double w = 0.700;
    
    
        /* if the maximal velocity from the previous step is less than 'gamma' times the current maximal velocity, then one
         * terminating criterion is met */
        double gamma = 0.5;
    
        /* if 'delta' times 'n' particles are in the centroid neighborhood given by the radius 'epsilon', then the second
         * terminating criterion is met ('n' is the total number of particles) */
        double epsilon = 0.02;
    
        l4n::ParticleSwarm swarm(
    
                &domain_bounds,
                c1,
                c2,
                w,
                gamma,
                epsilon,
                delta,
                n_particles,
                max_iters
        );
    
    void optimize_via_gradient_descent( l4n::DESolver &solver, double accuracy ){
    
        printf("Solution via a gradient descent method!\n");
    
        l4n::GradientDescent gd( accuracy, 1000 );
    
        solver.randomize_parameters( );
        solver.solve( gd );
    }
    
    void test_harmonic_oscilator_fixed_E(double EE, double accuracy, size_t n_inner_neurons, size_t train_size, double ds, double de, size_t n_test_points, double ts, double te, size_t max_iters, size_t n_particles){
        std::cout << "Finding a solution via the Particle Swarm Optimization" << std::endl;
        std::cout << "********************************************************************************************************************************************" <<std::endl;
    
        /* SOLVER SETUP */
        size_t n_inputs = 1;
        size_t n_equations = 1;
    
        l4n::DESolver solver( n_equations, n_inputs, n_inner_neurons );
    
        l4n::MultiIndex alpha_0( n_inputs );
        l4n::MultiIndex alpha_2( n_inputs );
    
        alpha_2.set_partial_derivative(0, 2);
    
        /* the governing differential equation */
        char buff[255];
        std::sprintf(buff, "%f", -EE);
        std::string eigenvalue(buff);
        solver.add_to_differential_equation( 0, alpha_2, "-1.0" );
        solver.add_to_differential_equation( 0, alpha_0, "x^2" );
        solver.add_to_differential_equation( 0, alpha_0, eigenvalue );
    
        /* SETUP OF THE TRAINING DATA */
        std::vector<double> inp, out;
    
        double d1_s = ds, d1_e = de, frac;
    
        /* TRAIN DATA FOR THE GOVERNING DE */
        std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_g;
    
    
        /* ISOTROPIC TRAIN SET */
        frac = (d1_e - d1_s) / (train_size - 1);
        for(unsigned int i = 0; i < train_size; ++i){
            inp = {frac * i + d1_s};
            out = {0.0};
            data_vec_g.emplace_back(std::make_pair(inp, out));
        }
    
        inp = {0.0};
        out = {1.0};
        data_vec_g.emplace_back(std::make_pair(inp, out));
    
    
        /* Placing the conditions into the solver */
    
        solver.set_error_function( 0, l4n::ErrorFunctionType::ErrorFuncMSE, &ds_00 );
    
    
        /* PARTICLE SWARM TRAINING METHOD SETUP */
        size_t total_dim = (2 + n_inputs) * n_inner_neurons;
    
    
        optimize_via_gradient_descent( solver, accuracy );
        export_solution( n_test_points, te, ts, solver, alpha_0, "gradient_" );
    
        std::cout << "Running lib4neuro harmonic Oscilator example   1" << std::endl;
        std::cout << "********************************************************************************************************************************************" <<std::endl;
        std::cout << "          Governing equation: -y''(x) + x^2 * y(x) = E * y(x)" << std::endl;
        std::cout << "********************************************************************************************************************************************" <<std::endl;
        std::cout << "Expressing solution as y(x) = sum over [a_i / (1 + exp(bi - wxi*x ))], i in [1, n], where n is the number of hidden neurons" <<std::endl;
        std::cout << "********************************************************************************************************************************************" <<std::endl;
    
        double EE = -1.0;
        unsigned int n_inner_neurons = 2;
        unsigned int train_size = 10;
        double accuracy = 1e-3;
        double ds = -5.0;
        double de = 5.0;
    
        unsigned int test_size = 300;
        double ts = -6.0;
        double te = 6.0;
    
        size_t particle_swarm_max_iters = 1000;
        size_t n_particles = 100;
        test_harmonic_oscilator_fixed_E(EE, accuracy, n_inner_neurons, train_size, ds, de, test_size, ts, te, particle_swarm_max_iters, n_particles);