Skip to content
Snippets Groups Projects
Projekt2GUI.java 26.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    package cz.vsb.mro0010.neuralnetworks;
    
    import java.awt.Color;
    import java.awt.EventQueue;
    
    import javax.swing.JFileChooser;
    import javax.swing.JFrame;
    import javax.swing.JMenuBar;
    import javax.swing.JMenu;
    import javax.swing.JMenuItem;
    import javax.swing.JOptionPane;
    import javax.swing.JTable;
    import javax.swing.ScrollPaneConstants;
    
    import java.awt.event.ActionListener;
    import java.awt.event.ActionEvent;
    import java.awt.event.WindowEvent;
    import java.io.BufferedWriter;
    import java.io.File;
    import java.io.FileNotFoundException;
    import java.io.FileReader;
    import java.io.FileWriter;
    import java.io.IOException;
    import java.io.StreamTokenizer;
    import java.text.DecimalFormat;
    import java.util.ArrayList;
    import java.util.Arrays;
    
    import javax.swing.JButton;
    import javax.swing.JScrollPane;
    import javax.swing.JLabel;
    import javax.swing.filechooser.FileFilter;
    import javax.swing.JSpinner;
    import javax.swing.JTextField;
    import javax.swing.SpinnerNumberModel;
    import javax.swing.event.ChangeListener;
    import javax.swing.event.ChangeEvent;
    import javax.swing.JPanel;
    
    import com.thoughtworks.xstream.XStream;
    
    import java.awt.GridLayout;
    
    public class Projekt2GUI {
    
    	private JFrame frmBPnet;
    	private BPNet neuralNet;
    	private File dataFile;
    	private String trainingData;
    	private String testData;
    	
    	private int nrOfInputs;
    	private int nrOfOutputs;
    	private int nrOfLayers;
    	private float maxError;
    	private float slope;
    	private float inertiaCoeff;
    	private ArrayList<Integer> nrOfNeuronsPerLayer;
    	private ArrayList<String> inputNames;
    	private ArrayList<String> outputNames;
    	
    	
    	private ArrayList<float[]> inputRanges;
    	private float learnCoeff;
    	
    	
    	private int nrOfTrainingElements;
    	private int nrOfTestElements;
    	
    	//Swing components
    	private JButton btnLearn;
    	private JTable tableLearn;
    	private JTable tableTest;
    	private JScrollPane scrollPaneLearn;
    	private JScrollPane scrollPaneTest;
    	private JButton btnTestData;
    	private JButton btnDoSpecifiedLearn;
    	private JSpinner spinnerLearnSteps;
    	private JTextField textFieldIterations;
    	private JLabel lblLearned;
    	private JLabel lblLearnCoeff;
    	private JLabel lblSlopeLambda;
    	private JSpinner spinnerLearnCoeff;
    	private JSpinner spinnerSlope;
    	private JLabel lblMaxError;
    	private JSpinner spinnerError;
    	private JLabel lblCurentError;
    	private JTextField textFieldCurrentError;
    	private JTextField textFieldTestElement;
    	private JTextField textFieldTestOutput;
    	private JButton btnTestElement;
    	private JButton btnResetWeights;
    	private JPanel panelTopology;
    	private JButton btnAddLayer;
    	private JSpinner spinnerLayer;
    	private JSpinner spinnerLayerNeurons;
    	private JMenuItem mntmSaveNeuralNet;
    	
    	
    	/**
    	 * Launch the application.
    	 */
    	public static void main(String[] args) {
    		EventQueue.invokeLater(new Runnable() {
    			public void run() {
    				try {
    					Projekt2GUI window = new Projekt2GUI();
    					window.frmBPnet.setVisible(true);
    				} catch (Exception e) {
    					e.printStackTrace();
    				}
    			}
    		});
    	}
    
    	/**
    	 * Create the application.
    	 */
    	public Projekt2GUI() {
    		initialize();
    	}
    
    	
    	private void changeAfterLearn() {
    		btnLearn.setEnabled(false);
    		btnTestData.setEnabled(true);
    		btnDoSpecifiedLearn.setEnabled(false);
    		lblLearned.setText("Learned");
    		lblLearned.setForeground(Color.GREEN);
    		spinnerLearnSteps.setEnabled(false);
    		spinnerError.setEnabled(false);
            spinnerLearnCoeff.setEnabled(false);
            spinnerSlope.setEnabled(false);
            textFieldCurrentError.setText(String.valueOf(neuralNet.getError()));
            btnTestElement.setEnabled(true);
            textFieldTestElement.setEnabled(true);
            textFieldTestOutput.setEnabled(true);
            btnResetWeights.setEnabled(false);
            btnAddLayer.setEnabled(false);
            spinnerLayer.setEnabled(false);
            spinnerLayerNeurons.setEnabled(false);
            frmBPnet.getContentPane().remove(panelTopology);
            frmBPnet.revalidate();
            frmBPnet.repaint();
            mntmSaveNeuralNet.setEnabled(true);
    	}
    	
    	/**
    	 * Initialize the contents of the frame.
    	 */
    	private void initialize() {
    		//Default values
    		slope = (float)1.1; 
    		maxError = (float)0.1;
    		
    		
    		frmBPnet = new JFrame();
    		frmBPnet.setTitle("Backpropagation network");
    		frmBPnet.setBounds(100, 100, 778, 562);
    		frmBPnet.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    		frmBPnet.getContentPane().setLayout(null);
    		
    		
    		
    		btnLearn = new JButton("Quick Learn");
    		btnLearn.addActionListener(new ActionListener() {
    			
    
    			public void actionPerformed(ActionEvent e) {
    				
    				int iterations = neuralNet.learn(trainingData);
    				changeAfterLearn();
    				textFieldIterations.setText(String.valueOf(iterations));
    				//JOptionPane.showMessageDialog(null, "Neural Net learned in " + iterations + " iterations.");
    			
    			}
    		});
    		btnLearn.setEnabled(false);
    		btnLearn.setBounds(10, 188, 174, 23);
    		frmBPnet.getContentPane().add(btnLearn);
    		
    		btnTestData = new JButton("Test data");
    		btnTestData.addActionListener(new ActionListener() {
    			public void actionPerformed(ActionEvent e) {
    				btnTestData.setEnabled(false);
    				
    				
    				String[] columnNames = new String[nrOfInputs + nrOfOutputs];
    				for (int i = 0; i < nrOfInputs; i++) {
    					columnNames[i] = inputNames.get(i);
    					
    				}
    				for (int i = 0; i < nrOfOutputs; i++) {
    					columnNames[nrOfInputs + i] = outputNames.get(i);
    				}
    		        Float[][] fDataTable = new Float[nrOfTestElements][nrOfInputs + nrOfOutputs];
    		        String[] rows = testData.split("\n");
    		        for (int i = 0; i < nrOfTestElements; i++) {
    		        	neuralNet.run(rows[i]);
    		        	String output = neuralNet.getOutput();
    		        	String[] cells = (rows[i] + " " + output).split(" ");
    					for (int j = 0; j < nrOfInputs + nrOfOutputs; j++) {
    						fDataTable[i][j] = Float.valueOf(cells[j]);
    					}
    				}
    		        tableTest = new JTable( fDataTable, columnNames);
    		        tableTest.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
    		        scrollPaneTest.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS);
    		        scrollPaneTest.setViewportView(tableTest);
    		     
    
    			}
    		});
    		btnTestData.setEnabled(false);
    		btnTestData.setBounds(10, 222, 174, 23);
    		frmBPnet.getContentPane().add(btnTestData);
    		
    		scrollPaneLearn = new JScrollPane();
    		scrollPaneLearn.setBounds(10, 25, 368, 156);
    		frmBPnet.getContentPane().add(scrollPaneLearn);
    		
    		scrollPaneTest = new JScrollPane();
    		scrollPaneTest.setBounds(10, 267, 368, 160);
    		frmBPnet.getContentPane().add(scrollPaneTest);
    		
    		JLabel lblNewLabel = new JLabel("Training data");
    		lblNewLabel.setBounds(10, 11, 116, 14);
    		frmBPnet.getContentPane().add(lblNewLabel);
    		
    		JLabel lblTestData = new JLabel("Test data");
    		lblTestData.setBounds(10, 252, 103, 14);
    		frmBPnet.getContentPane().add(lblTestData);
    		
    		JLabel lblTrainingProcess = new JLabel("Training modification");
    		lblTrainingProcess.setBounds(386, 11, 132, 14);
    		frmBPnet.getContentPane().add(lblTrainingProcess);
    		
    		btnDoSpecifiedLearn = new JButton("Do specified learn steps");
    		btnDoSpecifiedLearn.addActionListener(new ActionListener() {
    			public void actionPerformed(ActionEvent e) {
    				boolean learned = false;
    				int iter = 0;
    				int maxIterations = (int)spinnerLearnSteps.getModel().getValue();
    				ArrayList<String> trainingElements = new ArrayList<String>(Arrays.asList(trainingData.split("\n")));
    //				float maxError = 0;
    				while(!learned  && (iter < maxIterations)) {
    					neuralNet.setError(0);
    					learned = true;
    					for (int i = 0; i < trainingElements.size(); i++) {
    						learned &= neuralNet.learnStep(trainingElements.get(i));
    //						if (neuralNet.getError() > maxError) {
    //							maxError = neuralNet.getError();
    //						}
    					}
    					iter++;
    					textFieldCurrentError.setText(String.valueOf(neuralNet.getError()));
    //					System.out.println(iter);
    				}
    				if (learned) {
    					changeAfterLearn();
    				}
    				int currentIter = Integer.parseInt(textFieldIterations.getText());
    				textFieldIterations.setText(String.valueOf(currentIter + iter));
    				
    				
    			}
    		});
    		btnDoSpecifiedLearn.setEnabled(false);
    		btnDoSpecifiedLearn.setBounds(194, 188, 184, 23);
    		frmBPnet.getContentPane().add(btnDoSpecifiedLearn);
    		
    		spinnerLearnSteps = new JSpinner();
    		spinnerLearnSteps.setModel(new SpinnerNumberModel(1, 1, 100000, 1));
    		spinnerLearnSteps.setEnabled(false);
    		spinnerLearnSteps.setBounds(194, 223, 88, 20);
    		frmBPnet.getContentPane().add(spinnerLearnSteps);
    		
    		textFieldIterations = new JTextField();
    		textFieldIterations.setEnabled(false);
    		textFieldIterations.setText("0");
    		textFieldIterations.setBounds(292, 223, 86, 20);
    		frmBPnet.getContentPane().add(textFieldIterations);
    		textFieldIterations.setColumns(10);
    		
    		lblLearned = new JLabel("Not Learned");
    		lblLearned.setForeground(Color.RED);
    		lblLearned.setBackground(Color.LIGHT_GRAY);
    		lblLearned.setBounds(514, 143, 74, 14);
    		frmBPnet.getContentPane().add(lblLearned);
    		
    		lblLearnCoeff = new JLabel("Learn coeff");
    		lblLearnCoeff.setBounds(388, 39, 79, 14);
    		frmBPnet.getContentPane().add(lblLearnCoeff);
    		
    		lblSlopeLambda = new JLabel("Slope - lambda");
    		lblSlopeLambda.setBounds(388, 64, 89, 14);
    		frmBPnet.getContentPane().add(lblSlopeLambda);
    		
    		
    		
    		spinnerLearnCoeff = new JSpinner();
    		spinnerLearnCoeff.addChangeListener(new ChangeListener() {
    			public void stateChanged(ChangeEvent e) {
    				learnCoeff = (float)spinnerLearnCoeff.getModel().getValue();
    				if (neuralNet != null)
    					neuralNet.changeLearnCoeffTo(learnCoeff);
    			}
    		});
    		spinnerLearnCoeff.setEnabled(false);
    		spinnerLearnCoeff.setModel(new SpinnerNumberModel(new Float(0.5), new Float(0.05), new Float(1), new Float(0.05)));
    		JSpinner.NumberEditor editor = (JSpinner.NumberEditor)spinnerLearnCoeff.getEditor();
            DecimalFormat format = editor.getFormat();
            format.setMinimumFractionDigits(5);
    		spinnerLearnCoeff.setBounds(499, 36, 74, 20);
    		frmBPnet.getContentPane().add(spinnerLearnCoeff);
    		
    		slope = (float)1.1;
    		spinnerSlope = new JSpinner();
    		spinnerSlope.addChangeListener(new ChangeListener() {
    			public void stateChanged(ChangeEvent e) {
    				slope = (float)spinnerSlope.getModel().getValue();
    				if (neuralNet != null)
    					neuralNet.changeSlopeTo(slope);
    			}
    		});
    		spinnerSlope.setEnabled(false);
    		spinnerSlope.setBounds(499, 61, 74, 20);
    		spinnerSlope.setModel(new SpinnerNumberModel(new Float(slope), new Float(0.05), null, new Float(0.05)));
    		editor = (JSpinner.NumberEditor)spinnerSlope.getEditor();
            format = editor.getFormat();
            format.setMinimumFractionDigits(5);
    		frmBPnet.getContentPane().add(spinnerSlope);
    		
    		lblMaxError = new JLabel("Max error");
    		lblMaxError.setBounds(388, 89, 67, 14);
    		frmBPnet.getContentPane().add(lblMaxError);
    		
    		
    		maxError = (float)0.1;
    		spinnerError = new JSpinner();
    		spinnerError.addChangeListener(new ChangeListener() {
    			public void stateChanged(ChangeEvent e) {
    				maxError = (float)spinnerError.getModel().getValue();
    				if (neuralNet != null)
    					neuralNet.setTolerance(maxError);
    			}
    		});
    		spinnerError.setEnabled(false);
    		spinnerError.setBounds(499, 86, 74, 20);
    		spinnerError.setModel(new SpinnerNumberModel(new Float(maxError), new Float(0.00001), new Float(100), new Float(0.00001)));
    		editor = (JSpinner.NumberEditor)spinnerError.getEditor();
            format = editor.getFormat();
            format.setMinimumFractionDigits(5);
    		frmBPnet.getContentPane().add(spinnerError);
    		
    		lblCurentError = new JLabel("Current Error");
    		lblCurentError.setBounds(388, 115, 79, 14);
    		frmBPnet.getContentPane().add(lblCurentError);
    		
    		textFieldCurrentError = new JTextField();
    		textFieldCurrentError.setEnabled(false);
    		textFieldCurrentError.setBounds(487, 112, 86, 20);
    		frmBPnet.getContentPane().add(textFieldCurrentError);
    		textFieldCurrentError.setColumns(10);
    		
    		JLabel lblChangeNetworkTopology = new JLabel("Change network topology");
    		lblChangeNetworkTopology.setBounds(389, 168, 184, 14);
    		frmBPnet.getContentPane().add(lblChangeNetworkTopology);
    		
    		textFieldTestElement = new JTextField();
    		textFieldTestElement.setEnabled(false);
    		textFieldTestElement.setBounds(10, 438, 272, 20);
    		frmBPnet.getContentPane().add(textFieldTestElement);
    		textFieldTestElement.setColumns(10);
    		
    		btnTestElement = new JButton("Run input");
    		btnTestElement.addActionListener(new ActionListener() {
    			public void actionPerformed(ActionEvent e) {
    				String input = textFieldTestElement.getText();
    				try {
    					neuralNet.run(input);
    				}
    				catch(InvalidInputNumberException exception) {
    					JOptionPane.showMessageDialog(null, "Invalid Input");
    				}
    				finally {
    					String output = neuralNet.getOutput();
    					textFieldTestOutput.setText(output);
    				}
    			}
    		});
    		btnTestElement.setEnabled(false);
    		btnTestElement.setBounds(289, 437, 89, 23);
    		frmBPnet.getContentPane().add(btnTestElement);
    		
    		textFieldTestOutput = new JTextField();
    		textFieldTestOutput.setEnabled(false);
    		textFieldTestOutput.setBounds(49, 471, 329, 20);
    		frmBPnet.getContentPane().add(textFieldTestOutput);
    		textFieldTestOutput.setColumns(10);
    		
    		JLabel lblOutput = new JLabel("Output");
    		lblOutput.setBounds(10, 474, 46, 14);
    		frmBPnet.getContentPane().add(lblOutput);
    		
    		btnResetWeights = new JButton("Reset weights");
    		btnResetWeights.setEnabled(false);
    		btnResetWeights.addActionListener(new ActionListener() {
    			public void actionPerformed(ActionEvent e) {
    				neuralNet.resetWeights();
    			}
    		});
    		btnResetWeights.setBounds(388, 138, 116, 23);
    		frmBPnet.getContentPane().add(btnResetWeights);
    		
    		panelTopology = new JPanel();
    		panelTopology.setBounds(386, 213, 366, 214);
    		frmBPnet.getContentPane().add(panelTopology);
    		
    		btnAddLayer = new JButton("Add layer");
    		btnAddLayer.setEnabled(false);
    		btnAddLayer.setBounds(386, 188, 89, 23);
    		frmBPnet.getContentPane().add(btnAddLayer);
    		
    		spinnerLayer = new JSpinner();
    		spinnerLayer.setEnabled(false);
    		spinnerLayer.setBounds(499, 189, 40, 20);
    		frmBPnet.getContentPane().add(spinnerLayer);
    		
    		spinnerLayerNeurons = new JSpinner();
    		spinnerLayerNeurons.setEnabled(false);
    		spinnerLayerNeurons.setBounds(571, 189, 40, 20);
    		frmBPnet.getContentPane().add(spinnerLayerNeurons);
    		
    		JLabel lblTo = new JLabel("to");
    		lblTo.setBounds(483, 192, 46, 14);
    		frmBPnet.getContentPane().add(lblTo);
    		
    		JLabel lblWith = new JLabel("with");
    		lblWith.setBounds(542, 192, 46, 14);
    		frmBPnet.getContentPane().add(lblWith);
    		
    		JLabel lblNeurons = new JLabel("neurons");
    		lblNeurons.setBounds(621, 192, 74, 14);
    		frmBPnet.getContentPane().add(lblNeurons);
    		
    		
    		
    		JMenuBar menuBar = new JMenuBar();
    		frmBPnet.setJMenuBar(menuBar);
    		
    		
    		JMenu mnFile = new JMenu("File");
    		menuBar.add(mnFile);
    		
    		JMenuItem mntmLoadData = new JMenuItem("Load data");
    		mntmLoadData.addActionListener(new ActionListener() {
    			
    
    			public void actionPerformed(ActionEvent e) {
    				JFileChooser fc = new JFileChooser();
    			    fc.setDialogType(JFileChooser.OPEN_DIALOG);
    			    FileFilter filter = new FileFilter() {
    					
    					@Override
    					public String getDescription() {
    						return "Txt files";
    					}
    					
    					@Override
    					public boolean accept(File f) {
    						return (f.getName().endsWith(".txt") || f.isDirectory());
    					}
    				};
    			    fc.setFileFilter(filter);
    			    
    			    
    		        
    			    if (fc.showOpenDialog(frmBPnet) == JFileChooser.APPROVE_OPTION) {
    			    	dataFile = fc.getSelectedFile();
    			    	FileReader fr;
    					try {
    						
    						spinnerLearnSteps.setEnabled(true);
    				        spinnerError.setEnabled(true);
    				        spinnerLearnCoeff.setEnabled(true);
    				        spinnerSlope.setEnabled(true);
    						spinnerLearnCoeff.setValue(new Float((float)spinnerLearnCoeff.getValue()));
    						spinnerSlope.setValue(spinnerSlope.getValue());
    						spinnerError.setValue(spinnerError.getValue());
    						
    						//Parse data file
    						
    						
    						
    						fr = new FileReader(dataFile);
    						StreamTokenizer tokenizer = new StreamTokenizer(fr);
    						/*for (int i = 0; i < 6; i++ )
    							tokenizer.nextToken();
    						*/
    						while(true) {
    							tokenizer.nextToken();
    							if ((tokenizer.nextToken() == StreamTokenizer.TT_WORD) && tokenizer.sval.equals("vrstev")) {
    								tokenizer.nextToken();
    								break;
    							}
    						}
    						nrOfLayers = (int)tokenizer.nval;
    						while(tokenizer.nextToken() != StreamTokenizer.TT_NUMBER) {}
    						nrOfInputs = (int)tokenizer.nval;
    						tokenizer.nextToken();
    						tokenizer.nextToken();
    						tokenizer.nextToken();
    						tokenizer.nextToken();
    						inputRanges = new ArrayList<float[]>();
    						inputNames = new ArrayList<String>();
    						for (int i = 0; i < nrOfInputs; i++) {
    							String inputName = tokenizer.sval;
    							inputNames.add(inputName);
    							tokenizer.nextToken();
    							float[] dims = new float[2];
    							dims[0] = (float)tokenizer.nval;
    							tokenizer.nextToken();
    							dims[1] = (float)tokenizer.nval;
    							inputRanges.add(dims);
    							tokenizer.nextToken();
    						}
    						/*for (int i = 0; i < 3; i++ )
    							tokenizer.nextToken();*/
    						while(tokenizer.nextToken() != StreamTokenizer.TT_NUMBER) {}
    						nrOfNeuronsPerLayer = new ArrayList<Integer>();
    						for (int i = 0; i < nrOfLayers; i++) {
    							nrOfNeuronsPerLayer.add((int)tokenizer.nval);
    							if (i == nrOfLayers - 1) {
    								nrOfOutputs = (int)tokenizer.nval;
    							}
    							tokenizer.nextToken();
    						}
    						for (int i = 0; i < 3; i++ )
    							tokenizer.nextToken();
    						outputNames = new ArrayList<String>();
    						for (int i = 0; i < nrOfOutputs; i++) {
    							outputNames.add(tokenizer.sval);
    							tokenizer.nextToken();
    						}
    						while(tokenizer.nextToken() != StreamTokenizer.TT_NUMBER) {}
    						learnCoeff = (float)tokenizer.nval;
    						spinnerLearnCoeff.getModel().setValue(new Float(learnCoeff));
    						while(tokenizer.nextToken() != StreamTokenizer.TT_NUMBER) {}
    						inertiaCoeff = (float)tokenizer.nval;
    						/*for (int i = 0; i < 7; i++ )
    							tokenizer.nextToken();*/
    						while(tokenizer.nextToken() != StreamTokenizer.TT_NUMBER) {}
    						nrOfTrainingElements = (int)tokenizer.nval;
    						/*for (int i = 0; i < 4; i++ )
    							tokenizer.nextToken();*/
    						while(tokenizer.nextToken() != StreamTokenizer.TT_NUMBER) {}
    						StringBuffer sb = new StringBuffer();
    						for (int i = 0; i < nrOfTrainingElements; i++) {
    							for (int j = 0; j < nrOfInputs; j++) {
    								sb.append(String.valueOf(tokenizer.nval/(inputRanges.get(j)[1]-inputRanges.get(j)[0]) - inputRanges.get(j)[0]/(inputRanges.get(j)[1]-inputRanges.get(j)[0])));
    								sb.append(" ");
    								tokenizer.nextToken();
    							}
    							for (int j = 0; j < nrOfOutputs; j++) {
    								sb.append(String.valueOf(tokenizer.nval));
    								sb.append(" ");
    								tokenizer.nextToken();
    							}
    							sb.deleteCharAt(sb.length() - 1);
    							sb.append("\n");
    						}
    						trainingData = sb.toString();
    						sb = new StringBuffer();
    						/*for (int i = 0; i < 5; i++ )
    							tokenizer.nextToken();*/
    						while(tokenizer.nextToken() != StreamTokenizer.TT_NUMBER) {}
    						nrOfTestElements = (int)tokenizer.nval;
    						/*tokenizer.nextToken();*/
    						if (nrOfTestElements > 0) {
    							while(tokenizer.nextToken() != StreamTokenizer.TT_NUMBER) {}
    							for (int i = 0; i < nrOfTestElements; i++) {
    								for (int j = 0; j < nrOfInputs; j++) {
    									sb.append(String.valueOf(String.valueOf(tokenizer.nval/(inputRanges.get(j)[1]-inputRanges.get(j)[0]) - inputRanges.get(j)[0]/(inputRanges.get(j)[1]-inputRanges.get(j)[0]))));
    									sb.append(" ");
    									tokenizer.nextToken();
    								}
    								sb.deleteCharAt(sb.lastIndexOf(" "));
    								sb.append("\n");
    							}
    							testData = sb.substring(0,sb.lastIndexOf("\n"));
    						} else {
    							testData = "";
    						}
    						fr.close();
    						
    						
    						
    						neuralNet = new BPNet(maxError, nrOfLayers, nrOfInputs, nrOfNeuronsPerLayer, slope, learnCoeff);
    						spinnerError.getModel().setValue(maxError);
    						btnLearn.setEnabled(true);
    						//Show learn table
    						String[] columnNames = new String[nrOfInputs + nrOfOutputs];
    						for (int i = 0; i < nrOfInputs; i++) {
    							columnNames[i] = inputNames.get(i);
    							
    						}
    						for (int i = 0; i < nrOfOutputs; i++) {
    							columnNames[nrOfInputs + i] = outputNames.get(i);
    						}
    				        Float[][] fDataTable = new Float[nrOfTrainingElements][nrOfInputs + nrOfOutputs];
    				        String[] rows = trainingData.split("\n");
    				        for (int i = 0; i < nrOfTrainingElements; i++) {
    				        	String[] cells = rows[i].split(" ");
    							for (int j = 0; j < nrOfInputs + nrOfOutputs; j++) {
    								fDataTable[i][j] = Float.valueOf(cells[j]);
    							}
    						}
    				        tableLearn = new JTable( fDataTable, columnNames);
    				        tableLearn.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
    				        scrollPaneLearn.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS);
    				        scrollPaneLearn.setViewportView(tableLearn);
    				        //Show test table
    				        columnNames = new String[nrOfInputs];
    						for (int i = 0; i < nrOfInputs; i++) {
    							columnNames[i] = inputNames.get(i);
    						}
    				        fDataTable = new Float[nrOfTestElements][nrOfInputs];
    				        rows = testData.split("\n");
    				        for (int i = 0; i < nrOfTestElements; i++) {
    				        	String[] cells = rows[i].split(" ");
    							for (int j = 0; j < nrOfInputs; j++) {
    								fDataTable[i][j] = Float.valueOf(cells[j]);
    							}
    						}
    				        tableTest = new JTable( fDataTable, columnNames);
    				        tableTest.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
    				        scrollPaneTest.setViewportView(tableTest);
    				        btnResetWeights.setEnabled(true);
    				        btnDoSpecifiedLearn.setEnabled(true);
    				        btnAddLayer.setEnabled(true);
    				        spinnerLayer.setEnabled(true);
    				        spinnerLayer.setModel(new SpinnerNumberModel(0, 0, neuralNet.getNrOfLayers(), 1));
    				        spinnerLayerNeurons.setEnabled(true);
    				        spinnerLayerNeurons.setModel(new SpinnerNumberModel(1, 1, null, 1));
    				        
    				        btnAddLayer.addActionListener(new ActionListener() {
    							public void actionPerformed(ActionEvent e) {
    								neuralNet.addNeuronLayer((Integer)spinnerLayerNeurons.getValue(), (Integer)spinnerLayer.getValue(), slope);
    								refreshPanelTopology();
    							}
    						});
    				        refreshPanelTopology();
    				        
    						
    					} catch (FileNotFoundException e1) {
    						e1.printStackTrace();
    						JOptionPane.showMessageDialog(null, "Error: File not found");
    					} catch (IOException e1) {
    						e1.printStackTrace();
    						JOptionPane.showMessageDialog(null, "IOException");
    					}
    					
    			    	
    			    }
    				
    			}
    
    			private void refreshPanelTopology() {
    				panelTopology.setLayout(new GridLayout(neuralNet.getNrOfLayers() + 1, 4));
    				panelTopology.removeAll();
    				nrOfLayers = neuralNet.getNrOfLayers();
    				String map = neuralNet.getNeuronMap();
    				String[] layers = map.split(" ");
    				spinnerLayer.setModel(new SpinnerNumberModel(0, 0, neuralNet.getNrOfLayers() - 1, 1));
    		        spinnerLayerNeurons.setModel(new SpinnerNumberModel(1, 1, null, 1));
    				for (int i = 0; i < nrOfLayers; i++) {
    					JLabel label = new JLabel(layers[nrOfLayers - 1 - i]);
    					panelTopology.add(label);
    					if (i > 0) {
    					JButton btn1 = new JButton("Rmv neuron");
    					JButton btn2 = new JButton("Rmv layer");
    					JButton btn3 = new JButton("Add neuron");
    					btn1.setName(String.valueOf(nrOfLayers - 1 - i));
    					btn2.setName(String.valueOf(nrOfLayers - 1 - i));
    					btn3.setName(String.valueOf(nrOfLayers - 1 - i));
    					btn1.addActionListener(new ActionListener() {
    						
    						@Override
    						public void actionPerformed(ActionEvent e) {
    							String name = ((JButton)e.getSource()).getName();
    							neuralNet.removeNeuron(Integer.parseInt(name));
    							refreshPanelTopology();
    						}
    					});
    					btn2.addActionListener(new ActionListener() {
    						
    						@Override
    						public void actionPerformed(ActionEvent e) {
    							String name = ((JButton)e.getSource()).getName();
    							neuralNet.removeNeuronLayer(Integer.parseInt(name));
    							refreshPanelTopology();
    						}
    					});
    					btn3.addActionListener(new ActionListener() {
    						
    						@Override
    						public void actionPerformed(ActionEvent e) {
    							String name = ((JButton)e.getSource()).getName();
    							neuralNet.addNeuron(Integer.parseInt(name), slope);
    							refreshPanelTopology();
    							
    						}
    					});
    					panelTopology.add(btn1);
    					panelTopology.add(btn2);
    					panelTopology.add(btn3);
    					} else {
    						panelTopology.add(new JLabel(" "));
    						panelTopology.add(new JLabel(" "));
    						panelTopology.add(new JLabel(" "));
    					}
    				}
    				panelTopology.add(new JLabel("Inputs"));
    				panelTopology.add(new JLabel(String.valueOf(neuralNet.getNrOfInputs())));
    				panelTopology.add(new JLabel(" "));
    				panelTopology.add(new JLabel(" "));
    				frmBPnet.revalidate();
    			}
    		});
    		mnFile.add(mntmLoadData);
    		
    		JMenuItem mntmExit = new JMenuItem("Exit");
    		mntmExit.addActionListener(new ActionListener() {
    			public void actionPerformed(ActionEvent arg0) {
    				frmBPnet.dispatchEvent(new WindowEvent(frmBPnet, WindowEvent.WINDOW_CLOSING));
    			}
    		});
    		
    		mntmSaveNeuralNet = new JMenuItem("Save Neural Net");
    		mntmSaveNeuralNet.addActionListener(new ActionListener() {
    			public void actionPerformed(ActionEvent e) {
    				try { 
    					File address = null;
    					JFileChooser fc = new JFileChooser();
    					FileFilter filter = new FileFilter() {
    						
    						@Override
    						public String getDescription() {
    							return "Xml files";
    						}
    						
    						@Override
    						public boolean accept(File f) {
    							return (f.getName().endsWith(".xml") || f.isDirectory());
    						}
    					};
    				    fc.setFileFilter(filter);
    					fc.setCurrentDirectory(new java.io.File("."));
    					//fc.setFileSelectionMode(JFileChooser.SAVE_DIALOG);
    					if (fc.showSaveDialog(frmBPnet) == JFileChooser.APPROVE_OPTION) {
    				    	address = fc.getSelectedFile();
    				    	XStream xstream = new XStream();
    				    	String xml = xstream.toXML(neuralNet);
    				    	BufferedWriter out = new BufferedWriter(new FileWriter(address));
    				    	out.write(xml);
    				    	out.close();
    //						BPNet testNet = (BPNet)xstream.fromXML(xml);
    				    	
    						JOptionPane.showMessageDialog(null, "Hotovo");
    					}
    				}
    				catch (Exception ex) {
    					ex.printStackTrace();
    					JOptionPane.showMessageDialog(null, ex.getMessage());
    				}
    				
    			}
    		});
    		mntmSaveNeuralNet.setEnabled(false);
    		mnFile.add(mntmSaveNeuralNet);
    		mnFile.add(mntmExit);
    	}
    }