Newer
Older
Martin Beseda
committed
//
// Created by martin on 19.08.19.
//
Martin Beseda
committed
#include "../settings.h"
#include "ACSFNeuralNetwork.h"
Martin Beseda
committed
void lib4neuro::ACSFNeuralNetwork::load_structure_from_file(const char* filepath){
this->init_from_file( filepath );
}
Martin Beseda
committed
lib4neuro::ACSFNeuralNetwork::ACSFNeuralNetwork(std::unordered_map<ELEMENT_SYMBOL, Element*>& elements,
std::vector<ELEMENT_SYMBOL>& elements_list,
bool with_charge,
std::unordered_map<ELEMENT_SYMBOL, std::vector<unsigned int>> n_hidden_neurons,
std::unordered_map<ELEMENT_SYMBOL, std::vector<NEURON_TYPE>> type_hidden_neurons) {
/* Check parameters */
for(auto symbol : elements_list) {
if(n_hidden_neurons[symbol].size() != type_hidden_neurons[symbol].size()) {
THROW_RUNTIME_ERROR("Number of hidden layers for " + elements[symbol]->getElementSymbol() + " ("
+ std::to_string(n_hidden_neurons[symbol].size())
+ ") doesn't correspond with a number of hidden neuron types ("
+ std::to_string(type_hidden_neurons[symbol].size()) + ")!");
}
}
/* Save info about elements */
this->elements = &elements;
this->elements_list = &elements_list;
Martin Beseda
committed
/* Construct the neural network */
std::vector<size_t> inputs;
std::unordered_map<ELEMENT_SYMBOL, size_t> subnet_neuron_shifts;
std::unordered_map<ELEMENT_SYMBOL, size_t> subnet_connection_shifts;
std::unordered_map<ELEMENT_SYMBOL, bool> subnet_constructed;
size_t last_neuron_bias_idx = 0;
size_t last_connection_weight_idx = 0;
std::shared_ptr<Neuron> output_neuron = std::make_shared<NeuronLinear>();
size_t last_neuron_idx = this->add_neuron(output_neuron, BIAS_TYPE::NO_BIAS);
std::vector<size_t> outputs = {last_neuron_idx};
Martin Beseda
committed
for(size_t i = 0; i < elements_list.size(); i++) {
std::vector<size_t> previous_layer;
std::vector<size_t> new_layer;
size_t first_input_neuron_index = last_neuron_idx + 1;
Martin Beseda
committed
/* Create input neurons for sub-net */
std::shared_ptr<NeuronLinear> inp_n;
for(size_t j = 0; j < elements[elements_list.at(i)]->getSymmetryFunctions()->size(); j++) {
Martin Beseda
committed
inp_n = std::make_shared<NeuronLinear>();
last_neuron_idx = this->add_neuron(inp_n, BIAS_TYPE::NO_BIAS);
previous_layer.emplace_back(last_neuron_idx);
inputs.emplace_back(last_neuron_idx);
Martin Beseda
committed
}
/* Add an additional input neuron for charge, if provided */
if(with_charge) {
inp_n = std::make_shared<NeuronLinear>();
last_neuron_idx = this->add_neuron(inp_n, BIAS_TYPE::NO_BIAS);
previous_layer.emplace_back(last_neuron_idx);
inputs.emplace_back(last_neuron_idx);
Martin Beseda
committed
}
/* Create subnet for the current element */
bool new_subnet = false;
if(subnet_constructed.find(elements_list.at(i)) == subnet_constructed.end()) {
subnet_constructed[elements_list.at(i)] = true;
subnet_neuron_shifts[elements_list.at(i)] = last_neuron_bias_idx;
subnet_connection_shifts[elements_list.at(i)] = last_connection_weight_idx;
// std::cout << "Particle " << i << ", input neuron indices: " << first_input_neuron_index << " - " << last_neuron_idx << std::endl;
Martin Beseda
committed
/* Create hidden layers in sub-net */
std::vector<unsigned int> n_neurons = n_hidden_neurons[ elements_list.at(i) ];
std::vector<NEURON_TYPE> types = type_hidden_neurons[ elements_list.at(i) ];
size_t local_neuron_idx = subnet_neuron_shifts[elements_list.at(i)];
size_t local_connection_idx = subnet_connection_shifts[elements_list.at(i)];
Martin Beseda
committed
for(size_t j = 0; j < n_neurons.size(); j++) { /* Iterate over hidden layers */
/* Create hidden neurons */
for(size_t k = 0; k < n_neurons.at(j); k++) {
std::shared_ptr<Neuron> hid_n;
switch(types.at(j)) {
case NEURON_TYPE::LOGISTIC: {
hid_n = std::make_shared<NeuronLogistic>();
break;
}
case NEURON_TYPE::BINARY: {
hid_n = std::make_shared<NeuronBinary>();
break;
}
case NEURON_TYPE::CONSTANT: {
hid_n = std::make_shared<NeuronConstant>();
break;
}
case NEURON_TYPE::LINEAR: {
hid_n = std::make_shared<NeuronLinear>();
break;
}
}
last_neuron_idx = this->add_neuron(hid_n,
// std::cout << " new subnet, neuron index: " << last_neuron_idx << ", neuron bias: " << last_neuron_bias_idx << std::endl;
last_neuron_bias_idx++;
last_neuron_idx = this->add_neuron(hid_n,
BIAS_TYPE::EXISTING_BIAS, local_neuron_idx);
// std::cout << " old subnet, neuron index: " << last_neuron_idx << ", neuron bias: " << local_neuron_idx << std::endl;
new_layer.emplace_back(last_neuron_idx);
Martin Beseda
committed
/* Connect hidden neuron to the previous layer */
for(auto prev_n : previous_layer) {
this->add_connection_simple(prev_n,
last_neuron_idx,
SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT);
// std::cout << " new subnet, connection weight bias: " << last_connection_weight_idx << std::endl;
last_connection_weight_idx++;
} else {
this->add_connection_simple(prev_n,
last_neuron_idx,
SIMPLE_CONNECTION_TYPE::EXISTING_WEIGHT, local_connection_idx);
// std::cout << " old subnet, connection weight bias: " << local_connection_idx << std::endl;
Martin Beseda
committed
}
}
previous_layer = new_layer;
new_layer.clear();
Martin Beseda
committed
}
/* Create output neurons for sub-net */
for(auto prev_n : previous_layer) {
this->add_connection_constant(prev_n, outputs[ 0 ], 1.0);
Martin Beseda
committed
}
}
/* Specify network inputs and outputs */
// COUT_INFO("input len: " << inputs.size() );
Martin Beseda
committed
this->specify_input_neurons(inputs);
this->specify_output_neurons(outputs);
}
std::unordered_map<lib4neuro::ELEMENT_SYMBOL, lib4neuro::Element*>* lib4neuro::ACSFNeuralNetwork::get_elements() {
return this->elements;
}
std::vector<lib4neuro::ELEMENT_SYMBOL>* lib4neuro::ACSFNeuralNetwork::get_elements_list() {
return this->elements_list;
}