Newer
Older

Michal Kravcenko
committed
/**
* Example solving the eigenvalue problem:
*
*
*
* @author Michal Kravčenko
* @date 3.9.18 -
*/
#include <random>
#include <iostream>
#include <fstream>

Michal Kravcenko
committed
void export_solution( size_t n_test_points, double te, double ts, l4n::DESolver &solver, l4n::MultiIndex &alpha, const std::string prefix ){
l4n::NeuralNetwork *solution = solver.get_solution( alpha );

Michal Kravcenko
committed
char buff[256];
sprintf( buff, "%sdata_1d_osc.txt", prefix.c_str() );
std::string final_fn( buff );

Michal Kravcenko
committed
std::ofstream ofs(final_fn, std::ofstream::out);
printf("Exporting files '%s': %7.3f%%\r", final_fn.c_str(), 0.0);
double frac = (te - ts) / (n_test_points - 1), x;

Michal Kravcenko
committed
std::vector<double> inp(1), out(1);

Michal Kravcenko
committed
for(size_t i = 0; i < n_test_points; ++i){
x = frac * i + ts;

Michal Kravcenko
committed
inp[0] = x;
solution->eval_single(inp, out);
ofs << i + 1 << " " << x << " " << out[0] << " " << std::endl;

Michal Kravcenko
committed
printf("Exporting files '%s': %7.3f%%\r", final_fn.c_str(), (100.0 * i) / (n_test_points - 1));
std::cout.flush();

Michal Kravcenko
committed
printf("Exporting files '%s': %7.3f%%\n", final_fn.c_str(), 100.0);
std::cout.flush();
ofs.close();
}
void optimize_via_particle_swarm( l4n::DESolver &solver, l4n::MultiIndex &alpha, size_t max_iters, size_t n_particles ){

Michal Kravcenko
committed
printf("Solution via the particle swarm optimization!\n");
std::vector<double> domain_bounds(2 * (solver.get_solution( alpha )->get_n_biases() + solver.get_solution( alpha )->get_n_weights()));
for(size_t i = 0; i < domain_bounds.size() / 2; ++i){
domain_bounds[2 * i] = -10;
domain_bounds[2 * i + 1] = 10;
double c1 = 1.7;
double c2 = 1.7;
double w = 0.700;
/* if the maximal velocity from the previous step is less than 'gamma' times the current maximal velocity, then one
* terminating criterion is met */
double gamma = 0.5;
/* if 'delta' times 'n' particles are in the centroid neighborhood given by the radius 'epsilon', then the second
* terminating criterion is met ('n' is the total number of particles) */
double epsilon = 0.02;
double delta = 0.7;
&domain_bounds,
c1,
c2,
w,
gamma,
epsilon,
delta,
n_particles,
max_iters
);

Michal Kravcenko
committed
solver.solve( swarm );

Michal Kravcenko
committed
}
void optimize_via_gradient_descent( l4n::DESolver &solver, double accuracy ){

Michal Kravcenko
committed
printf("Solution via a gradient descent method!\n");
l4n::GradientDescent gd( accuracy, 1000 );

Michal Kravcenko
committed
solver.randomize_parameters( );
solver.solve( gd );
}

Michal Kravcenko
committed
void test_harmonic_oscilator_fixed_E(double EE, double accuracy, size_t n_inner_neurons, size_t train_size, double ds, double de, size_t n_test_points, double ts, double te, size_t max_iters, size_t n_particles){
std::cout << "Finding a solution via the Particle Swarm Optimization" << std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
/* SOLVER SETUP */
size_t n_inputs = 1;
size_t n_equations = 1;
Martin Beseda
committed
l4n::DESolver solver( n_equations, n_inputs, n_inner_neurons );
/* SETUP OF THE EQUATIONS */
Martin Beseda
committed
l4n::MultiIndex alpha_0( n_inputs );
l4n::MultiIndex alpha_2( n_inputs );
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
alpha_2.set_partial_derivative(0, 2);
/* the governing differential equation */
char buff[255];
std::sprintf(buff, "%f", -EE);
std::string eigenvalue(buff);
solver.add_to_differential_equation( 0, alpha_2, "-1.0" );
solver.add_to_differential_equation( 0, alpha_0, "x^2" );
solver.add_to_differential_equation( 0, alpha_0, eigenvalue );
/* SETUP OF THE TRAINING DATA */
std::vector<double> inp, out;
double d1_s = ds, d1_e = de, frac;
/* TRAIN DATA FOR THE GOVERNING DE */
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_g;
/* ISOTROPIC TRAIN SET */
frac = (d1_e - d1_s) / (train_size - 1);
for(unsigned int i = 0; i < train_size; ++i){
inp = {frac * i + d1_s};
out = {0.0};
data_vec_g.emplace_back(std::make_pair(inp, out));
}

Michal Kravcenko
committed
inp = {0.0};
out = {1.0};
data_vec_g.emplace_back(std::make_pair(inp, out));
Martin Beseda
committed
l4n::DataSet ds_00(&data_vec_g);
/* Placing the conditions into the solver */
Martin Beseda
committed
solver.set_error_function( 0, l4n::ErrorFunctionType::ErrorFuncMSE, &ds_00 );
/* PARTICLE SWARM TRAINING METHOD SETUP */
size_t total_dim = (2 + n_inputs) * n_inner_neurons;

Michal Kravcenko
committed
optimize_via_gradient_descent( solver, accuracy );
export_solution( n_test_points, te, ts, solver, alpha_0, "gradient_" );

Michal Kravcenko
committed
int main() {
std::cout << "Running lib4neuro harmonic Oscilator example 1" << std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
std::cout << " Governing equation: -y''(x) + x^2 * y(x) = E * y(x)" << std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
std::cout << "Expressing solution as y(x) = sum over [a_i / (1 + exp(bi - wxi*x ))], i in [1, n], where n is the number of hidden neurons" <<std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
double EE = -1.0;
unsigned int n_inner_neurons = 2;
unsigned int train_size = 10;
double accuracy = 1e-3;
double ds = -5.0;
double de = 5.0;
unsigned int test_size = 300;
double ts = -6.0;
double te = 6.0;
size_t particle_swarm_max_iters = 1000;
size_t n_particles = 100;
test_harmonic_oscilator_fixed_E(EE, accuracy, n_inner_neurons, train_size, ds, de, test_size, ts, te, particle_swarm_max_iters, n_particles);

Michal Kravcenko
committed
return 0;