Newer
Older
/**
* Example solving the following ODE:
*
* g(t) = (d^2/d^t)y(t) + 4 (d/dt)y(t) + 4y(t) = 0, for t in [0, 4]
* y(0) = 1
* (d/dt)y(0) = 1
*
* -------------------------------------------
* Analytical solution: e^(-2x) * (3x + 1)
* NN representation: sum over [a_i * (1 + e^(-x * w_i + b_i))^(-1)]
* -------------------------------------------
* Optimal NN setting with biases (2 inner neurons)

Michal Kravcenko
committed
* Path 1. w = -1.66009975, b = -0.40767447, a = 2.46457042
* Path 2. w = -4.38622765, b = 2.75707816, a = -8.04752347
* @author Michal Kravčenko
* @date 17.7.18 -
*/
#include "4neuro.h"
void optimize_via_particle_swarm( l4n::DESolver &solver, l4n::MultiIndex &alpha, size_t max_iters, size_t n_particles ){
printf("Solution via the particle swarm optimization!\n");
std::vector<double> domain_bounds(2 * (solver.get_solution( alpha )->get_n_biases() + solver.get_solution( alpha )->get_n_weights()));
for(size_t i = 0; i < domain_bounds.size() / 2; ++i){
domain_bounds[2 * i] = -10;
domain_bounds[2 * i + 1] = 10;
double c1 = 1.7;
double c2 = 1.7;
double w = 0.700;
/* if the maximal velocity from the previous step is less than 'gamma' times the current maximal velocity, then one
* terminating criterion is met */
double gamma = 0.5;
/* if 'delta' times 'n' particles are in the centroid neighborhood given by the radius 'epsilon', then the second
* terminating criterion is met ('n' is the total number of particles) */
double epsilon = 0.02;
double delta = 0.7;
l4n::ParticleSwarm swarm(
&domain_bounds,
c1,
c2,
w,
gamma,
epsilon,
delta,
n_particles,
max_iters
);
void optimize_via_gradient_descent(l4n::DESolver &solver, double accuracy ){
printf("Solution via a gradient descent method!\n");
l4n::GradientDescent gd( accuracy, 1000 , 50);
solver.randomize_parameters( );
solver.solve( gd );
void export_solution( size_t n_test_points, double te, double ts,l4n::DESolver &solver, l4n::MultiIndex &alpha_0, l4n::MultiIndex &alpha_1, l4n::MultiIndex &alpha_2, const std::string prefix ){
l4n::NeuralNetwork *solution = solver.get_solution( alpha_0 );
l4n::NeuralNetwork *solution_d = solver.get_solution( alpha_1 );
l4n::NeuralNetwork *solution_dd = solver.get_solution( alpha_2 );
/* ISOTROPIC TEST SET FOR BOUNDARY CONDITIONS */
/* first boundary condition & its error */
char buff[256];
sprintf( buff, "%sdata_1d_ode1.txt", prefix.c_str() );
std::string final_fn( buff );
std::ofstream ofs(final_fn, std::ofstream::out);
printf("Exporting files '%s': %7.3f%%\r", final_fn.c_str(), 0.0);
double frac = (te - ts) / (n_test_points - 1);
for(size_t i = 0; i < n_test_points; ++i){
double x = frac * i + ts;
inp[0] = x;
solution->eval_single(inp, out);
double F = out[0];
solution_d->eval_single( inp, out);
double DF = out[0];
solution_dd->eval_single( inp, out);
double DDF = out[0];
ofs << i + 1 << " " << x << " " << std::pow(l4n::E, -2*x) * (3*x + 1)<< " " << F << " "
<< std::pow(l4n::E, -2*x) * (1 - 6*x)<< " " << DF << " " << 4 * std::pow(l4n::E, -2*x) * (3*x - 2)
<< " " << DDF << std::endl;
printf("Exporting files '%s': %7.3f%%\r", final_fn.c_str(), (100.0 * i) / (n_test_points - 1));
std::cout.flush();
printf("Exporting files '%s': %7.3f%%\r", final_fn.c_str(), 100.0);

Michal Kravcenko
committed
std::cout << "********************************************************************************************************************************************" <<std::endl;
void test_ode(double accuracy, size_t n_inner_neurons, size_t train_size, double ds, double de, size_t n_test_points, double ts, double te, size_t max_iters, size_t n_particles){
std::cout << "Finding a solution via the Particle Swarm Optimization and Gradient descent method!" << std::endl;

Michal Kravcenko
committed
std::cout << "********************************************************************************************************************************************" <<std::endl;

Michal Kravcenko
committed
/* SOLVER SETUP */
l4n::DESolver solver_01( n_equations, n_inputs, n_inner_neurons );

Michal Kravcenko
committed
/* SETUP OF THE EQUATIONS */
l4n::MultiIndex alpha_0( n_inputs );
l4n::MultiIndex alpha_1( n_inputs );
l4n::MultiIndex alpha_2( n_inputs );

Michal Kravcenko
committed
alpha_2.set_partial_derivative(0, 2);
alpha_1.set_partial_derivative(0, 1);
/* the governing differential equation */

Michal Kravcenko
committed
solver_01.add_to_differential_equation( 0, alpha_0, "4.0" );
solver_01.add_to_differential_equation( 0, alpha_1, "4.0" );
solver_01.add_to_differential_equation( 0, alpha_2, "1.0" );

Michal Kravcenko
committed
/* dirichlet boundary condition */

Michal Kravcenko
committed
solver_01.add_to_differential_equation( 1, alpha_0, "1.0" );

Michal Kravcenko
committed
/* neumann boundary condition */

Michal Kravcenko
committed
solver_01.add_to_differential_equation( 2, alpha_1, "1.0" );

Michal Kravcenko
committed
/* SETUP OF THE TRAINING DATA */
std::vector<double> inp, out;

Michal Kravcenko
committed
double d1_s = ds, d1_e = de, frac;

Michal Kravcenko
committed
/* TRAIN DATA FOR THE GOVERNING DE */
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_g;

Michal Kravcenko
committed
std::vector<double> test_points(train_size);

Michal Kravcenko
committed
/* ISOTROPIC TRAIN SET */
frac = (d1_e - d1_s) / (train_size - 1);
for(unsigned int i = 0; i < train_size; ++i){
inp = {frac * i};
out = {0.0};
data_vec_g.emplace_back(std::make_pair(inp, out));

Michal Kravcenko
committed
test_points[i] = inp[0];
}
/* CHEBYSCHEV TRAIN SET */
// alpha = PI / (train_size - 1);
// frac = 0.5 * (d1_e - d1_s);
// for(unsigned int i = 0; i < train_size; ++i){
// inp = {(std::cos(alpha * i) + 1.0) * frac + d1_s};
// out = {0.0};
// data_vec_g.emplace_back(std::make_pair(inp, out));

Michal Kravcenko
committed
//
// test_points[i] = inp[0];
/* TRAIN DATA FOR DIRICHLET BC */
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_y;
inp = {0.0};
out = {1.0};
data_vec_y.emplace_back(std::make_pair(inp, out));
/* TRAIN DATA FOR NEUMANN BC */
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_dy;
inp = {0.0};
out = {1.0};
data_vec_dy.emplace_back(std::make_pair(inp, out));

Michal Kravcenko
committed
/* Placing the conditions into the solver */
solver_01.set_error_function( 0, l4n::ErrorFunctionType::ErrorFuncMSE, &ds_00 );
solver_01.set_error_function( 1, l4n::ErrorFunctionType::ErrorFuncMSE, &ds_01 );
solver_01.set_error_function( 2, l4n::ErrorFunctionType::ErrorFuncMSE, &ds_02 );

Michal Kravcenko
committed
/* optimize_via_particle_swarm( solver_01, alpha_0, max_iters, n_particles );
export_solution( n_test_points, te, ts, solver_01 , alpha_0, alpha_1, alpha_2, "particle_" );*/
auto start = std::chrono::system_clock::now();
optimize_via_gradient_descent( solver_01, accuracy );
export_solution( n_test_points, te, ts, solver_01 , alpha_0, alpha_1, alpha_2, "gradient_" );
auto end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "elapsed time: " << elapsed_seconds.count() << std::endl;

Michal Kravcenko
committed
std::cout << "Running lib4neuro Ordinary Differential Equation example 1" << std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
std::cout << " Governing equation: y''(x) + 4y'(x) + 4y(x) = 0.0, for x in [0, 4]" << std::endl;
std::cout << "Dirichlet boundary condition: y(0.0) = 1.0" << std::endl;
std::cout << " Neumann boundary condition: y'(0.0) = 1.0" << std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
std::cout << "Expressing solution as y(x) = sum over [a_i / (1 + exp(bi - wxi*x ))], i in [1, n], where n is the number of hidden neurons" <<std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;

Michal Kravcenko
committed
unsigned int n_inner_neurons = 2;
unsigned int train_size = 10;

Michal Kravcenko
committed
double ds = 0.0;
double de = 4.0;

Michal Kravcenko
committed
unsigned int test_size = 300;
double ts = ds;
double te = de + 2;

Michal Kravcenko
committed
size_t particle_swarm_max_iters = 1000;
size_t n_particles = 100;
test_ode(accuracy, n_inner_neurons, train_size, ds, de, test_size, ts, te, particle_swarm_max_iters, n_particles);