Skip to content
Snippets Groups Projects
simulator.cpp 4.09 KiB
Newer Older
  • Learn to ignore specific revisions
  • //
    // Created by martin on 25.11.18.
    //
    
    /**
     * This file serves for testing of various examples, have fun!
     *
     * @author Michal Kravčenko
     * @date 14.6.18 -
     */
    
    #include <iostream>
    #include <cstdio>
    #include <fstream>
    #include <vector>
    #include <utility>
    #include <algorithm>
    #include <assert.h>
    
    #include "4neuro.h"
    #include "../CrossValidator/CrossValidator.h"
    
    double get_rel_error(std::vector<double> &d1, std::vector<double> &d2){
        double out = 0, m, n = 0;
    
        assert(d1.size() == d2.size());
    
        for( size_t i = 0; i < d1.size(); ++i){
            m = d1[i] - d2[i];
            n += d1[i]*d1[i];
            out += m*m;
        }
    
        return m/n;
    }
    
    int main(int argc, char** argv){
    
    
            /* Read data from the file */
    
    //        l4n::CSVReader reader("/home/martin/Desktop/ANN_DATA_1_SET.txt", "\t", true);
            l4n::CSVReader reader("/tmp/data_Heaviside.txt", "\t", false);
    
            /* Create data set for both the training and testing of the neural network */
    
            std::vector<unsigned int> inputs = { 0 };
            std::vector<unsigned int> outputs = { 1 };
    
            l4n::DataSet ds = reader.get_data_set(&inputs, &outputs);
    
            ds.normalize();
    
    //        ds.print_data();
    
            /* Neural network construction */
    
            std::vector<unsigned int> neuron_numbers_in_layers = {1, 10, 10, 1};
    
            l4n::FullyConnectedFFN nn(&neuron_numbers_in_layers, l4n::NEURON_TYPE::LOGISTIC);
    
            /* Error function */
            l4n::MSE mse(&nn, &ds);
    
            /* Domain */
            std::vector<double> domain_bounds(2 * (nn.get_n_weights() + nn.get_n_biases()));
    
            /* Training method */
    
    //    for(size_t i = 0; i < domain_bounds.size() / 2; ++i){
    //        domain_bounds[2 * i] = -10;
    //        domain_bounds[2 * i + 1] = 10;
    //    }
    //    l4n::ParticleSwarm ps(&domain_bounds,
    //                          1.711897,
    //                          1.711897,
    //                          0.711897,
    //                          0.5,
    //                          20,
    //                          0.7,
    //                          600,
    //                          1000);
    
            l4n::GradientDescent gs(1e-3, 100, 100000);
    
            nn.randomize_weights();
    
            /* Cross - validation */
            l4n::CrossValidator cv(&gs, &mse);
            cv.run_k_fold_test(10, 1);
    
            /* Save network to the file */
            nn.save_text("test_net.4n");
    
            /* Check of the saved network */
            std::cout << std::endl << "The original network info:" << std::endl;
            nn.print_stats();
            nn.print_weights();
    
            l4n::NeuralNetwork nn_loaded("test_net.4n");
            std::cout << std::endl << "The loaded network info:" << std::endl;
            nn_loaded.print_stats();
            nn_loaded.print_weights();
    
            /* Example of evaluation of a single input, normalized input, de-normalized output */
            std::vector<double> input_norm(ds.get_input_dim()),
                    input(ds.get_input_dim()),
                    output_norm(ds.get_output_dim()),
                    expected_output_norm(ds.get_output_dim()),
                    output(ds.get_output_dim());
    
            size_t data_idx = 0;
            ds.get_input(input_norm, data_idx);
            ds.get_output(expected_output_norm, data_idx);
    
            nn_loaded.eval_single(input_norm, output_norm);
    
            ds.de_normalize_single(output_norm, output);
            ds.de_normalize_single(input_norm, input);
    
            std::cout << std::endl << "input: ";
            for (auto el: input_norm) { std::cout << el << ", "; }
            std::cout << std::endl;
            std::cout << "output: ";
            for (auto el: output) { std::cout << el << ", "; }
            std::cout << std::endl;
            std::cout << "error of the " << data_idx << "-th element: "
                      << get_rel_error(output_norm, expected_output_norm) << std::endl;
    
    
            return 0;
    
        } catch(const std::runtime_error& e) {
    
            exit(EXIT_FAILURE);
        } catch(const std::out_of_range& e) {
    
            std::cerr << e.what() << std::endl;
            exit(EXIT_FAILURE);
        } catch(const std::invalid_argument& e) {
            std::cerr << e.what() << std::endl;