Skip to content
Snippets Groups Projects
ErrorFunctions.cpp 2.67 KiB
Newer Older
//
// Created by martin on 7/15/18.
//

#include <vector>
#include <utility>

#include "ErrorFunctions.h"

size_t ErrorFunction::get_dimension() {
    return this->dimension;
}

MSE::MSE(NeuralNetwork *net, DataSet *ds) {
    this->net = net;
    this->ds = ds;
    this->dimension = net->get_n_weights();
}

double MSE::eval(double *weights) {
    unsigned int dim_out = this->ds->get_output_dim();
    size_t n_elements = this->ds->get_n_elements();
    double error = 0.0, val;

    std::vector<std::pair<std::vector<double>, std::vector<double>>>* data = this->ds->get_data();

Michal Kravcenko's avatar
Michal Kravcenko committed
//    //TODO instead use something smarter
//    this->net->copy_weights(weights);

    std::vector<double> output( dim_out );

    for(unsigned int i = 0; i < n_elements; ++i){  // Iterate through every element in the test set

Michal Kravcenko's avatar
Michal Kravcenko committed
        this->net->eval_single(std::get<0>(data->at(i)), output, weights);  // Compute the net output and store it into 'output' variable
Michal Kravcenko's avatar
Michal Kravcenko committed

//        printf("errors: ");
        for(unsigned int j = 0; j < dim_out; ++j) {  // Compute difference for every element of the output vector
            val = output[j] - std::get<1>(data->at(i))[j];
            error += val * val;
Michal Kravcenko's avatar
Michal Kravcenko committed

//            printf("%f, ", val * val);
Michal Kravcenko's avatar
Michal Kravcenko committed
//        printf("\n");
Michal Kravcenko's avatar
Michal Kravcenko committed
//    printf("n_elements: %d\n", n_elements);
    return error/n_elements;
    this->summand_coefficient = nullptr;
Michal Kravcenko's avatar
Michal Kravcenko committed
    this->dimension = 0;
    if( this->summand ){
        delete this->summand;
    }
    if( this->summand_coefficient ){
        delete this->summand_coefficient;
    }
    for( unsigned int i = 0; i < this->summand->size(); ++i ){
        output += this->summand->at( i )->eval( weights ) * this->summand_coefficient->at( i );
void ERROR_SUM::add_error_function(ErrorFunction *F, double alpha) {
    if(!this->summand){
        this->summand = new std::vector<ErrorFunction*>(0);
    }
    this->summand->push_back( F );

    if(!this->summand_coefficient){
        this->summand_coefficient = new std::vector<double>(0);
    }
    this->summand_coefficient->push_back( alpha );
Michal Kravcenko's avatar
Michal Kravcenko committed

    if(F->get_dimension() > this->dimension){
        this->dimension = F->get_dimension();
    }
Michal Kravcenko's avatar
Michal Kravcenko committed
//    if(!this->dimension) {
//        size_t max = 0;
//        for(auto e : *this->summand) {
//            if(e->get_dimension() > max) {
//                max = e->get_dimension();
//            }
//        };
//
//        this->dimension = max;
//    }
Martin Beseda's avatar
Martin Beseda committed
    return this->dimension;