Newer
Older
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 30.7.18 -
*/

Michal Kravcenko
committed
#include <random.hpp>
#include "message.h"

Michal Kravcenko
committed
Martin Beseda
committed
GradientDescent::GradientDescent(double epsilon, size_t n_to_restart, int max_iters, size_t batch) {
this->tolerance = epsilon;
this->restart_frequency = n_to_restart;
this->maximum_niters = max_iters;
Martin Beseda
committed
this->batch = batch;

Michal Kravcenko
committed
}

Michal Kravcenko
committed
}
Martin Beseda
committed
void GradientDescent::eval_step_size_mk(double &gamma,
double beta,
double &c,
double grad_norm_prev,
double grad_norm,
double fi,
double fim) {

Michal Kravcenko
committed
if (fi > fim) {
c /= 1.0000005;
} else if (fi < fim) {
c *= 1.0000005;
}
gamma *= std::pow(c, 1.0 - 2.0 * beta) * std::pow(grad_norm_prev / grad_norm, 1.0 / c);

Michal Kravcenko
committed

Michal Kravcenko
committed

Michal Kravcenko
committed
bool GradientDescent::perform_feasible_1D_step(
lib4neuro::ErrorFunction &ef,
double error_previous,
double step_coefficient,
std::shared_ptr<std::vector<double>> direction,
std::shared_ptr<std::vector<double>> parameters_before,
std::shared_ptr<std::vector<double>> parameters_after

Michal Kravcenko
committed
) {
size_t i;
boost::random::mt19937 gen(std::time(0));
boost::random::uniform_int_distribution<> dis(0, direction->size());
size_t max_dir_idx = dis(gen);
double error_current = error_previous + 1.0;
while( error_current >= error_previous ){
(*parameters_after)[max_dir_idx] = (*parameters_before)[max_dir_idx] - step_coefficient * (*direction)[max_dir_idx];
error_current = ef.eval( parameters_after.get() );

Michal Kravcenko
committed
if( step_coefficient < 1e-32){
for (i = 0; i < direction->size(); ++i) {
(*parameters_after)[i] = (*parameters_before)[i] - step_coefficient * (*direction)[i];
}
return false;
}
else{
if( error_current >= error_previous ){
step_coefficient *= 0.5;
}
else{
}
}
}
return true;
}
Martin Beseda
committed
void GradientDescent::optimize(lib4neuro::ErrorFunction &ef, std::ofstream* ofs) {

Michal Kravcenko
committed
/* Copy data set max and min values, if it's normalized */
if(ef.get_dataset()->is_normalized()) {
ef.get_network_instance()->set_normalization_strategy_instance(
ef.get_dataset()->get_normalization_strategy());
}
COUT_INFO("Finding a solution via a Gradient Descent method with adaptive step-length..." << std::endl);

Michal Kravcenko
committed
COUT_INFO("Initial error: " << ef.eval() << std::endl);
Martin Beseda
committed
if(ofs && ofs->is_open()) {
*ofs << "Finding a solution via a Gradient Descent method with adaptive step-length..." << std::endl;

Michal Kravcenko
committed
*ofs << "Initial error: " << ef.eval() << std::endl;
Martin Beseda
committed
}
double grad_norm = this->tolerance * 10.0, gamma, sx, beta;
double grad_norm_prev;
size_t i;
long long int iter_idx = this->maximum_niters;
size_t iter_counter = 0;

Michal Kravcenko
committed
gamma = 1.0;
double prev_val, val = 0.0, c = 1.25;

Michal Kravcenko
committed
size_t n_parameters = ef.get_dimension();

Michal Kravcenko
committed
std::vector<double>* gradient_current(new std::vector<double>(n_parameters));
std::vector<double>* gradient_prev(new std::vector<double>(n_parameters));
std::vector<double>* params_current = new std::vector<double>(ef.get_parameters());
std::vector<double>* params_prev(new std::vector<double>(n_parameters));
std::vector<double>* ptr_mem;

Michal Kravcenko
committed
std::fill(gradient_current->begin(), gradient_current->end(), 0.0);
std::fill(gradient_prev->begin(), gradient_prev->end(), 0.0);

Michal Kravcenko
committed
val = ef.eval(params_current);

Michal Kravcenko
committed
double coeff = 1;
bool it_analyzed = false;
size_t counter_good_guesses = 0, counter_bad_guesses = 0, counter_simplified_direction_good = 0, counter_simplified_direction_bad = 0;
double cooling = 1.0;
while (grad_norm > this->tolerance && (iter_idx != 0)) {
iter_idx--;
iter_counter++;
prev_val = val;
grad_norm_prev = grad_norm;

Michal Kravcenko
committed
/* reset of the current gradient */
std::fill(gradient_current->begin(), gradient_current->end(), 0.0);
ef.calculate_error_gradient(*params_current, *gradient_current, 1.0, this->batch);

Michal Kravcenko
committed
grad_norm = 0.0;
for (auto v: *gradient_current) {
grad_norm += v * v;
}
grad_norm = std::sqrt(grad_norm);
/* Update of the parameters */
/* step length calculation */

Michal Kravcenko
committed
if (iter_counter < 10 || iter_counter % this->restart_frequency == 0 ) {
/* fixed step length */
gamma = 0.1 * this->tolerance;

Michal Kravcenko
committed
cooling = 1.0;
} else {
/* angle between two consecutive gradients */
sx = 0.0;
for (i = 0; i < gradient_current->size(); ++i) {
sx += (gradient_current->at(i) * gradient_prev->at(i));
}
sx /= grad_norm * grad_norm_prev;

Michal Kravcenko
committed
if( sx < -1.0 + 5e-12 ){
sx = -1 + 5e-12;
}
else if( sx > 1.0 - 5e-12 ){
sx = 1 - 5e-12;
}
beta = std::sqrt(std::acos(sx) / lib4neuro::PI);
eval_step_size_mk(gamma, beta, c, grad_norm_prev, grad_norm, val, prev_val);
}

Michal Kravcenko
committed
for (i = 0; i < gradient_current->size(); ++i) {

Michal Kravcenko
committed
(*params_prev)[i] = (*params_current)[i] - cooling * gamma * (*gradient_current)[i];

Michal Kravcenko
committed
}

Michal Kravcenko
committed

Michal Kravcenko
committed
/* switcheroo */
ptr_mem = gradient_prev;
gradient_prev = gradient_current;
gradient_current = ptr_mem;
ptr_mem = params_prev;
params_prev = params_current;
params_current = ptr_mem;

Michal Kravcenko
committed
COUT_DEBUG(std::string("Iteration: ") << (unsigned int)(iter_counter)

Michal Kravcenko
committed
<< ". Step size: " << gamma * cooling
<< ". C: " << c
<< ". Gradient norm: " << grad_norm
<< ". Total error: " << val
Martin Beseda
committed
WRITE_TO_OFS_DEBUG(ofs, "Iteration: " << (unsigned int)(iter_counter)

Michal Kravcenko
committed
<< ". Step size: " << gamma * cooling
<< ". C: " << c
<< ". Gradient norm: " << grad_norm
<< ". Total error: " << val
<< "." << std::endl);
Martin Beseda
committed

Michal Kravcenko
committed
cooling *= 0.9999;
Martin Beseda
committed

Michal Kravcenko
committed
}

Michal Kravcenko
committed
COUT_DEBUG(std::string("Iteration: ") << (unsigned int)(iter_counter)
<< ". Step size: " << gamma
<< ". C: " << c
<< ". Gradient norm: " << grad_norm
<< ". Total error: " << val
<< "." << std::endl);

Michal Kravcenko
committed
COUT_DEBUG("Number of total steps: " << counter_bad_guesses + counter_good_guesses << ", good: " << counter_good_guesses << ", bad: " << counter_bad_guesses << ", from which " << counter_simplified_direction_good + counter_simplified_direction_bad << " were attempted by simplified direction, success: " << counter_simplified_direction_good << ", fail: " << counter_simplified_direction_bad << std::endl << std::endl );

Michal Kravcenko
committed
if(iter_idx == 0) {

Michal Kravcenko
committed
COUT_INFO(std::endl << "Maximum number of iterations (" << this->maximum_niters << ") was reached! Final error: " << val << std::endl);
Martin Beseda
committed
if(ofs && ofs->is_open()) {

Michal Kravcenko
committed
*ofs << "Maximum number of iterations (" << this->maximum_niters << ") was reached! Final error: " << val << std::endl;
Martin Beseda
committed
}
} else {

Michal Kravcenko
committed
COUT_INFO(std::endl << "Gradient Descent method converged after "
<< this->maximum_niters - iter_idx
<< " iterations. Final error:" << val
<< std::endl);
Martin Beseda
committed
#ifdef L4N_DEBUG
if(ofs && ofs->is_open()) {
*ofs << "Gradient Descent method converged after "
<< this->maximum_niters-iter_idx
<< std::endl;
Martin Beseda
committed
}
#endif

Michal Kravcenko
committed
Martin Beseda
committed
this->optimal_parameters = *params_current;
ef.get_network_instance()->copy_parameter_space( &this->optimal_parameters );

Michal Kravcenko
committed
}