Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 30.7.18 -
*/
#include <random.hpp>
#include <limits>
#include "message.h"
#include "LazyLearning.h"
namespace lib4neuro {
LazyLearning::LazyLearning(
LearningMethod &inner_trainer,
double tol
){
this->inner_method = &inner_trainer;
this->tolerance = tol;
}
LazyLearning::~LazyLearning( ) {}
void LazyLearning::optimize(
lib4neuro::ErrorFunction& ef,
std::ofstream* ofs
) {
std::vector<size_t> subset_indices;
std::vector<bool> active_subset;
std::vector<float> entry_errors;
while( true ){
ef.divide_data_worst_subset( subset_indices, active_subset, entry_errors );
/* errors of the active subset */
float subset_error_min = std::numeric_limits<float>::max();
float subset_error_max = 0.0;
float subset_error_total = 0.0;
size_t new_subset_index = subset_indices[subset_indices.size() - 1];
float new_subset_entry_error = entry_errors[new_subset_index];
/* errors of the elements not considered */
float shelved_error_min = subset_error_min;
float shelved_error_max = 0.0;
float shelved_error_total = 0.0;
/* processing of the errors */
for( size_t i = 0; i < entry_errors.size(); ++i){
if( active_subset[ i ] ){
if( i == new_subset_index ){
}
else{
subset_error_total += entry_errors[ i ];
subset_error_max = std::max(subset_error_max, entry_errors[ i ] );
subset_error_min = std::min(subset_error_min, entry_errors[ i ] );
}
}
else{
shelved_error_total += entry_errors[ i ];
shelved_error_max = std::max(shelved_error_max, entry_errors[ i ] );
shelved_error_min = std::min(shelved_error_min, entry_errors[ i ] );
}
}
if( subset_indices.size() > 1 ){
COUT_INFO( "[" << subset_indices.size() << "] subset error: " << subset_error_total << ", in range: " << subset_error_min << " - " << subset_error_max << ", new entry error: " << new_subset_entry_error );
}
else{
COUT_INFO( "[" << subset_indices.size() << "] new entry error: " << new_subset_entry_error );
}
COUT_INFO( "[" << active_subset.size() - subset_indices.size() << "] remaining error: " << shelved_error_total << ", in range: " << shelved_error_min << " - " << shelved_error_max << std::endl );
if( shelved_error_max < this->tolerance && subset_error_max < this->tolerance && new_subset_entry_error < this->tolerance ){
break;
}
this->inner_method->optimize( ef, ofs );
double sub_error_after = ef.eval( );
while( sub_error_after > this->tolerance ){
this->inner_method->optimize( ef, ofs );
sub_error_after = ef.eval( );
}
ef.return_full_data_set_for_training( );
COUT_INFO( "------------------------" );
}
}
}//end of namespace lib4neuro