Newer
Older
#include <iostream>
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
void optimize_via_particle_swarm(l4n::NeuralNetwork& net,
l4n::ErrorFunction& ef) {
/* TRAINING METHOD SETUP */
std::vector<double> domain_bounds(2 * (net.get_n_weights() + net.get_n_biases()));
for (size_t i = 0; i < domain_bounds.size() / 2; ++i) {
domain_bounds[2 * i] = -10;
domain_bounds[2 * i + 1] = 10;
}
double c1 = 1.7;
double c2 = 1.7;
double w = 0.7;
size_t n_particles = 100;
size_t iter_max = 150;
/* if the maximal velocity from the previous step is less than 'gamma' times the current maximal velocity, then one
* terminating criterion is met */
double gamma = 0.5;
/* if 'delta' times 'n' particles are in the centroid neighborhood given by the radius 'epsilon', then the second
* terminating criterion is met ('n' is the total number of particles) */
double epsilon = 0.02;
double delta = 0.7;
l4n::ParticleSwarm swarm_01(
&domain_bounds,
c1,
c2,
w,
gamma,
epsilon,
delta,
n_particles,
iter_max
);
swarm_01.optimize(ef);
net.copy_parameter_space(swarm_01.get_parameters());
/* ERROR CALCULATION */
std::cout << "Run finished! Error of the network[Particle swarm]: " << ef.eval(nullptr) << std::endl;
std::cout
<< "***********************************************************************************************************************"
<< std::endl;
}
void optimize_via_gradient_descent(l4n::NeuralNetwork& net,
l4n::ErrorFunction& ef) {
std::cout
<< "***********************************************************************************************************************"
<< std::endl;
l4n::GradientDescentBB gd(1e-4,
100,
15000);
gd.optimize(ef);
net.copy_parameter_space(gd.get_parameters());
/* ERROR CALCULATION */
double err = ef.eval(nullptr);
std::cout << "Run finished! Error of the network[Gradient descent]: " << err << std::endl;
/* Just for validation test purposes - NOT necessary for the example to work! */
if(err > 0.002) {
throw std::runtime_error("Training was incorrect!");
}
}
int main() {
l4n::CSVReader reader("../../data/x2_data.txt",
" ",
reader.read();
std::vector<unsigned int> input_ind = {0};
std::vector<unsigned int> output_ind = {1};
std::shared_ptr<l4n::DataSet> ds = reader.get_data_set(&input_ind,
&output_ind);
std::vector<unsigned int> neuron_numbers_in_layers = {1, 15, 1};
std::vector<l4n::NEURON_TYPE> hidden_type_v = {l4n::NEURON_TYPE::LOGISTIC};
l4n::FullyConnectedFFN net(&neuron_numbers_in_layers,
&hidden_type_v);
net.randomize_parameters();
optimize_via_particle_swarm(net, mse);
optimize_via_gradient_descent(net, mse);
/* Print fit comparison with real data */
std::vector<double> output;
output.resize(1);
for(auto e : *ds->get_data()) {
for(auto inp_e : e.first) {
std::cout << inp_e << " ";
}
std::cout << e.second.at(0) << " ";
net.eval_single(e.first, output);
std::cout << output.at(0) << std::endl;
}
return 0;