Newer
Older

Michal Kravcenko
committed
#include <cstdio>
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 14.6.18 -
*/
#include "Network/NeuralNetwork.h"
#include "Neuron/NeuronLinear.h"
#include "NetConnection/Connection.h"
#include "NetConnection/ConnectionWeightIdentity.h"
//TODO prepsat tak, aby neuronova sit managovala destruktory vsech potrebnych objektu (kvuli serializaci)

Michal Kravcenko
committed
/**
* Test of simple neural network
* Network should evaluate the function f(x) = x + 1
*/
void test1(){
std::vector<double> in(1);
std::vector<double> out(1);
NeuralNetwork net;
NeuronLinear* u1 = new NeuronLinear(1.0, 1.0); //f(x) = x + 1.0
NeuronLinear* u2 = new NeuronLinear(0.0, 1.0); //f(x) = x
int idx1 = net.add_neuron(u1);
int idx2 = net.add_neuron(u2);
////////////////////// SIMPLE EDGE WEIGHT ////////////////////////////////////////
// net.add_connection_simple(idx1, idx2, -1, 1.0);
////////////////////// END SIMPLE EDGE WEIGHT ////////////////////////////////////////
/////////////////////////BEGIN OF COMPLEX EDGE WEIGHT//////////////////////////////
//TODO vyresit memleak
std::function<double(double **, int)> weight_function = [](double ** params, int n_params){
//w(x, y) = x + y
double a = (*(params[0]));
double b = (*(params[1]));
printf("eval: %f, %f\n", a, b);
return (a + 0.0 * b);
};
int weight_indices [2]= {0, -1};
double weight_values [2] = {1.0, 5.0};
net.add_connection_general(idx1, idx2, &weight_function, weight_indices, weight_values, 2);
/////////////////////////END OF COMPLEX EDGE WEIGHT//////////////////////////////

Michal Kravcenko
committed
for(int i = 0; i < 20; ++i){
in[0] = 0.05 * i;
net.eval_single(in, out);
printf("x = %3.2f, f(x) = %3.2f, expected output = %3.2f\n", in[0], out[0], in[0] + 1.0);
}
//clean-up phase
delete u1;
delete u2;