Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/**
* Example of saving neural network to a file and loading it.
* Network creation and training is copied from net_test_1.
*
* @author Martin Beseda
* @date 9.8.18
*/
#include <vector>
#include "4neuro.h"
int main() {
/* TRAIN DATA DEFINITION */
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec;
std::vector<double> inp, out;
inp = {0, 1};
out = {0.5};
data_vec.emplace_back(std::make_pair(inp, out));
inp = {1, 0.5};
out = {0.75};
data_vec.emplace_back(std::make_pair(inp, out));
DataSet ds(&data_vec);
/* NETWORK DEFINITION */
NeuralNetwork net;
/* Input neurons */
NeuronLinear *i1 = new NeuronLinear( ); //f(x) = x
NeuronLinear *i2 = new NeuronLinear( ); //f(x) = x
/* Output neuron */
double b = 1.0;//bias
NeuronLinear *o1 = new NeuronLinear( ); //f(x) = x + 1
/* Adding neurons to the net */
size_t idx1 = net.add_neuron(i1, BIAS_TYPE::NO_BIAS);
size_t idx2 = net.add_neuron(i2, BIAS_TYPE::NO_BIAS);
size_t idx3 = net.add_neuron(o1, BIAS_TYPE::NEXT_BIAS);
std::vector<double> *bv = net.get_parameter_ptr_biases();
for(size_t i = 0; i < 1; ++i){
bv->at(i) = 1.0;
}
/* Adding connections */
net.add_connection_simple(idx1, idx3, SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT);
net.add_connection_simple(idx2, idx3, SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT);
//net.randomize_weights();
/* specification of the input/output neurons */
std::vector<size_t> net_input_neurons_indices(2);
std::vector<size_t> net_output_neurons_indices(1);
net_input_neurons_indices[0] = idx1;
net_input_neurons_indices[1] = idx2;
net_output_neurons_indices[0] = idx3;
net.specify_input_neurons(net_input_neurons_indices);
net.specify_output_neurons(net_output_neurons_indices);
/* ERROR FUNCTION SPECIFICATION */
MSE mse(&net, &ds);
/* TRAINING METHOD SETUP */
unsigned int max_iters = 20;
double domain_bounds[4] = {-800.0, 800.0, -800.0, 800.0};
double c1 = 0.5, c2 = 1.5, w = 0.8;
unsigned int n_particles = 10;
ParticleSwarm swarm_01(&mse, domain_bounds, c1, c2, w, n_particles, max_iters);
swarm_01.optimize(0.5, 0.02);
/* SAVE NETWORK TO THE FILE */
std::cout << "Network 1" << std::endl;
net.print_stats();
net.save_text("saved_network.4nt");
std::cout << "Network 2" << std::endl;
NeuralNetwork net2("saved_network.4nt");
net2.print_stats();
return 0;
}