Skip to content
Snippets Groups Projects
net_test_pde_1.cpp 6.01 KiB
Newer Older
  • Learn to ignore specific revisions
  • Michal Kravcenko's avatar
    Michal Kravcenko committed
    /**
     * Example solving the water flow 1D diffusion PDE:
     *
     * (d^2/d^xx^x)y(x, t) - (d/dt)y(x, t) = 0, for t in [0, 1] x [0, 1]
     * y(0, t) = sin(t)
     * y(x, 0) = e^(-(0.5)^(0.5)x) * sin(-(0.5)^(0.5)x)
     *
     * -------------------------------------------
     * Analytical solution:
     * NN representation: sum over [a_i * (1 + e^(bi - x * w_ix - t * w_it))^(-1)]
     * -------------------------------------------
     * Optimal NN setting with biases (2 inner neurons)
     *
     * @author Michal Kravčenko
     * @date 9.8.18
     */
    
    #include <random>
    #include <iostream>
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    #include "../../include/4neuro.h"
    #include "../Solvers/DESolver.h"
    
    void test_pde(double accuracy, size_t n_inner_neurons, size_t train_size, double ds, double de, size_t n_test_points, double ts, double te, size_t max_iters, size_t n_particles){
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
        /* solution properties */
    
        /* do not change below */
        size_t n_inputs = 2;
        size_t n_equations = 3;
        DESolver solver_01( n_equations, n_inputs, n_inner_neurons );
    
        /* SETUP OF THE EQUATIONS */
        MultiIndex alpha_00( n_inputs );
        MultiIndex alpha_01( n_inputs );
        MultiIndex alpha_20( n_inputs );
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        alpha_00.set_partial_derivative(0, 0);
    
        alpha_00.set_partial_derivative(1, 0);
    
        alpha_01.set_partial_derivative(1, 1);
    
        alpha_20.set_partial_derivative(0, 2);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
        /* the governing differential equation */
        solver_01.add_to_differential_equation( 0, alpha_20,  1.0 );
        solver_01.add_to_differential_equation( 0, alpha_01, -1.0 );
    
        /* dirichlet boundary condition */
        solver_01.add_to_differential_equation( 1, alpha_00, 1.0 );
        solver_01.add_to_differential_equation( 2, alpha_00, 1.0 );
    
    
        /* SETUP OF THE TRAINING DATA */
        std::vector<double> inp, out;
    
        double frac, x, t;
    
        /* TRAIN DATA FOR THE GOVERNING DE */
    
        std::vector<double> test_bounds_2d = {ds, de, ds, de};
    
        /* GOVERNING EQUATION RHS */
        auto f1 = [](std::vector<double>&input) -> std::vector<double> {
            std::vector<double> output(1);
            output[0] = 0.0;
            return output;
        };
        DataSet ds_00(test_bounds_2d, train_size, f1, 1);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
        std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_t;
        std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_x;
    
        /* ISOTROPIC TRAIN SET */
        frac = (de - ds) / (train_size - 1);
        for(unsigned int i = 0; i < train_size; ++i){
            inp = {0.0, frac * i};
            out = {std::sin(inp[1])};
            data_vec_t.emplace_back(std::make_pair(inp, out));
    
            inp = {frac * i, 0.0};
            out = {std::pow(E, -0.707106781 * inp[0]) * std::sin( -0.707106781 * inp[0] )};
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            data_vec_x.emplace_back(std::make_pair(inp, out));
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        }
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        DataSet ds_x(&data_vec_x);
    
    
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        /* Placing the conditions into the solver */
        solver_01.set_error_function( 0, ErrorFunctionType::ErrorFuncMSE, &ds_00 );
        solver_01.set_error_function( 1, ErrorFunctionType::ErrorFuncMSE, &ds_t );
        solver_01.set_error_function( 2, ErrorFunctionType::ErrorFuncMSE, &ds_x );
    
    
    
        /* PARTICLE SWARM TRAINING METHOD SETUP */
    
    
        //must encapsulate each of the partial error functions
        double *domain_bounds = new double[ 6 * n_inner_neurons ];
        for(unsigned int i = 0; i < 3 * n_inner_neurons; ++i){
    
            domain_bounds[2 * i] = -20.0;
            domain_bounds[2 * i + 1] = 20.0;
    
        double c1 = 1.7, c2 = 1.7, w = 0.7;
        double gamma = 0.5, epsilon = 0.02, delta = 0.9;
    
        solver_01.solve_via_particle_swarm( domain_bounds, c1, c2, w, n_particles, max_iters, gamma, epsilon, delta );
        /* PRACTICAL END OF THE EXAMPLE */
    
        /* SOLUTION EXPORT */
        printf("Exporting solution & error files...");
    
        NeuralNetwork *solution = solver_01.get_solution();
        std::vector<double> *weight_params = solution->get_parameter_ptr_weights();
        std::vector<double> *biases_params = solution->get_parameter_ptr_biases();
    
        /* solution itself */
        DataSet test_set_1(test_bounds_2d, n_test_points, f1, 1);
    
        std::vector<double> input, output(1);
        std::ofstream ofs("data_2d_pde1_y.txt", std::ofstream::out);
        for(auto tp: *test_set_1.get_data()){
            input = tp.first;
    
            solution->eval_single(input, output);
    
            ofs << input[0] << " " << input[1] << " " << output[0] << std::endl;
        }
        ofs.close();
    
        /* governing equation error */
        ofs = std::ofstream("data_2d_pde1_first_equation_error.txt", std::ofstream::out);
        for(auto tp: *test_set_1.get_data()){
            input = tp.first;
    
            double eq_value = solver_01.eval_equation(0, nullptr, input);
    
            ofs << input[0] << " " << input[1] << " " << std::fabs(eq_value) << std::endl;
        }
        ofs.close();
    
        /* ISOTROPIC TEST SET FOR BOUNDARY CONDITIONS */
        frac = (de - ds) / (n_test_points - 1);
        /* first boundary condition & its error */
        ofs = std::ofstream("data_1d_pde1_yt.txt", std::ofstream::out);
        std::ofstream ofs2("data_1d_pde1_yx.txt", std::ofstream::out);
        for(unsigned int i = 0; i < n_test_points; ++i){
            double x = frac * i;
            double t = frac * i;
    
            double yt = std::sin(t);
            double yx = std::pow(E, -0.707106781 * x) * std::sin( -0.707106781 * x );
    
            input = {0.0, t};
            solution->eval_single( input, output, nullptr );
            ofs << i + 1 << " " << t << " " << yt << " " << output[0] << " " << std::fabs(output[0] - yt) << std::endl;
    
            input = {x, 0.0};
            solution->eval_single( input, output, nullptr );
            ofs2 << i + 1 << " " << x << " " << yx << " " << output[0] << " " << std::fabs(output[0] - yx) << std::endl;
        }
        ofs2.close();
        ofs.close();
    
        printf("done!\n");
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
    
        delete [] domain_bounds;
    }
    
    int main() {
    
    
        unsigned int n_inner_neurons = 6;
        unsigned int train_size = 20;
        double accuracy = 1e-4;
        double ds = 0.0;
        double de = 1.0;
    
        unsigned int test_size = 100;
        double ts = ds;
        double te = de;
    
        size_t particle_swarm_max_iters = 1000;
        size_t n_particles = 100;
        test_pde(accuracy, n_inner_neurons, train_size, ds, de, test_size, ts, te, particle_swarm_max_iters, n_particles);