Newer
Older
* Example of a neural network with reused edge weights
*/
#include <vector>
void optimize_via_particle_swarm(l4n::NeuralNetwork& net,
l4n::ErrorFunction& ef) {

Michal Kravcenko
committed
/* TRAINING METHOD SETUP */
std::vector<double> domain_bounds(2 * (net.get_n_weights() + net.get_n_biases()));
for (size_t i = 0; i < domain_bounds.size() / 2; ++i) {

Michal Kravcenko
committed
domain_bounds[2 * i + 1] = 10;
}
double c1 = 1.7;
double c2 = 1.7;
double w = 0.7;

Michal Kravcenko
committed
size_t n_particles = 50;

Michal Kravcenko
committed
/* if the maximal velocity from the previous step is less than 'gamma' times the current maximal velocity, then one
* terminating criterion is met */
double gamma = 0.5;
/* if 'delta' times 'n' particles are in the centroid neighborhood given by the radius 'epsilon', then the second
* terminating criterion is met ('n' is the total number of particles) */
double epsilon = 0.02;

Michal Kravcenko
committed
&domain_bounds,
c1,
c2,
w,
gamma,
epsilon,
delta,
n_particles,
iter_max

Michal Kravcenko
committed
);

Michal Kravcenko
committed
net.copy_parameter_space(swarm_01.get_parameters());

Michal Kravcenko
committed
std::cout << "Run finished! Error of the network[Particle swarm]: " << ef.eval(nullptr) << std::endl;
std::cout
<< "***********************************************************************************************************************"
<< std::endl;

Michal Kravcenko
committed
}
void optimize_via_gradient_descent(l4n::NeuralNetwork& net,
l4n::ErrorFunction& ef) {

Michal Kravcenko
committed

Michal Kravcenko
committed

Michal Kravcenko
committed
net.copy_parameter_space(gd.get_parameters());

Michal Kravcenko
committed
/* ERROR CALCULATION */
std::cout << "Run finished! Error of the network[Gradient descent]: " << ef.eval(nullptr) << std::endl;
std::cout
<< "***********************************************************************************************************************"
<< std::endl;

Michal Kravcenko
committed
}
int main() {
<< "Running lib4neuro example 2: Basic use of the particle swarm method to train a network with five linear neurons and repeating edge weights"
<< std::endl;
<< "********************************************************************************************************************************************"
<< std::endl;

Michal Kravcenko
committed
std::cout << "The code attempts to find an approximate solution to the system of equations below:" << std::endl;
std::cout << " 0 * w1 + 1 * w2 = 0.50 + b1" << std::endl;
std::cout << " 1 * w1 + 0.5*w2 = 0.75 + b1" << std::endl;
std::cout << "(1.25 + b2) * w2 = 0.63 + b3" << std::endl;
<< "***********************************************************************************************************************"
<< std::endl;
/* TRAIN DATA DEFINITION */
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec;
data_vec.emplace_back(std::make_pair(inp,
out));
data_vec.emplace_back(std::make_pair(inp,
out));
data_vec.emplace_back(std::make_pair(inp,
out));
Martin Beseda
committed
l4n::DataSet ds(&data_vec);
/* NETWORK DEFINITION */
Martin Beseda
committed
l4n::NeuralNetwork net;
/* Input neurons */
std::shared_ptr<l4n::NeuronLinear> i1 = std::make_shared<l4n::NeuronLinear>();
std::shared_ptr<l4n::NeuronLinear> i2 = std::make_shared<l4n::NeuronLinear>();
std::shared_ptr<l4n::NeuronLinear> i3 = std::make_shared<l4n::NeuronLinear>();
/* Output neurons */
std::shared_ptr<l4n::NeuronLinear> o1 = std::make_shared<l4n::NeuronLinear>();
std::shared_ptr<l4n::NeuronLinear> o2 = std::make_shared<l4n::NeuronLinear>();
/* Adding neurons to the nets */
size_t idx1 = net.add_neuron(i1,
l4n::BIAS_TYPE::NO_BIAS);
size_t idx2 = net.add_neuron(i2,
l4n::BIAS_TYPE::NO_BIAS);
size_t idx3 = net.add_neuron(o1,
l4n::BIAS_TYPE::NEXT_BIAS);
size_t idx4 = net.add_neuron(i3,
l4n::BIAS_TYPE::NEXT_BIAS);
size_t idx5 = net.add_neuron(o2,
l4n::BIAS_TYPE::NEXT_BIAS);

Michal Kravcenko
committed
/* Adding connections */
net.add_connection_simple(idx1,
idx3,
l4n::SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT); // weight index 0
net.add_connection_simple(idx2,
idx3,
l4n::SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT); // weight index 1
net.add_connection_simple(idx4,
idx5,
l4n::SIMPLE_CONNECTION_TYPE::EXISTING_WEIGHT,
0); // AGAIN weight index 0 - same weight!
/* specification of the input/output neurons */
std::vector<size_t> net_input_neurons_indices(3);
std::vector<size_t> net_output_neurons_indices(2);
net_input_neurons_indices[0] = idx1;
net_input_neurons_indices[1] = idx2;
net_input_neurons_indices[2] = idx4;
net_output_neurons_indices[0] = idx3;
net_output_neurons_indices[1] = idx5;
net.specify_input_neurons(net_input_neurons_indices);
net.specify_output_neurons(net_output_neurons_indices);
/* COMPLEX ERROR FUNCTION SPECIFICATION */

Michal Kravcenko
committed
/* PARTICLE SWARM LEARNING */
net.randomize_weights();

Michal Kravcenko
committed
/* GRADIENT DESCENT LEARNING */
net.randomize_weights();
return 0;