Newer
Older
Martin Beseda
committed
//
// Created by martin on 20.08.19.
//
Martin Beseda
committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include <4neuro.h>
void optimize_via_particle_swarm(l4n::NeuralNetwork& net,
l4n::ErrorFunction& ef) {
/* TRAINING METHOD SETUP */
std::vector<double> domain_bounds(2 * (net.get_n_weights() + net.get_n_biases()));
for (size_t i = 0; i < domain_bounds.size() / 2; ++i) {
domain_bounds[2 * i] = -10;
domain_bounds[2 * i + 1] = 10;
}
double c1 = 1.7;
double c2 = 1.7;
double w = 0.7;
size_t n_particles = 100;
size_t iter_max = 30;
/* if the maximal velocity from the previous step is less than 'gamma' times the current maximal velocity, then one
* terminating criterion is met */
double gamma = 0.5;
/* if 'delta' times 'n' particles are in the centroid neighborhood given by the radius 'epsilon', then the second
* terminating criterion is met ('n' is the total number of particles) */
double epsilon = 0.02;
double delta = 0.7;
l4n::ParticleSwarm swarm_01(
&domain_bounds,
c1,
c2,
w,
gamma,
epsilon,
delta,
n_particles,
iter_max
);
swarm_01.optimize(ef);
net.copy_parameter_space(swarm_01.get_parameters());
/* ERROR CALCULATION */
std::cout << "Run finished! Error of the network[Particle swarm]: " << ef.eval(nullptr) << std::endl;
std::cout
<< "***********************************************************************************************************************"
<< std::endl;
}
double optimize_via_gradient_descent(l4n::NeuralNetwork& net,
Martin Beseda
committed
l4n::ErrorFunction& ef) {
std::cout
<< "***********************************************************************************************************************"
<< std::endl;
l4n::GradientDescentBB gd(1e-6,
1000);
gd.optimize(ef);
net.copy_parameter_space(gd.get_parameters());
/* ERROR CALCULATION */
Martin Beseda
committed
double err = ef.eval(nullptr);
std::cout << "Run finished! Error of the network[Gradient descent]: " << err << std::endl;
/* Just for validation test purposes - NOT necessary for the example to work! */
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
return err;
}
double optimize_via_LBMQ(l4n::NeuralNetwork& net,
l4n::ErrorFunction& ef) {
size_t max_iterations = 10000;
size_t batch_size = 0;
double tolerance = 1e-6;
double tolerance_gradient = tolerance;
double tolerance_parameters = tolerance;
std::cout
<< "***********************************************************************************************************************"
<< std::endl;
l4n::LevenbergMarquardt lm(
max_iterations,
batch_size,
tolerance,
tolerance_gradient,
tolerance_parameters
);
lm.optimize(ef);
net.copy_parameter_space(lm.get_parameters());
/* ERROR CALCULATION */
double err = ef.eval(nullptr);
// std::cout << "Run finished! Error of the network[Levenberg-Marquardt]: " << err << std::endl;
/* Just for validation test purposes - NOT necessary for the example to work! */
return err;
Martin Beseda
committed
}
int main() {
Martin Beseda
committed
try{
/* Specify cutoff functions */
l4n::CutoffFunction1 cutoff1(10.1);
l4n::CutoffFunction2 cutoff2(12.5);
l4n::CutoffFunction2 cutoff3(15.2);
l4n::CutoffFunction2 cutoff4(10.3);
l4n::CutoffFunction2 cutoff5(12.9);
/* Specify symmetry functions */
l4n::G1 sym_f1(&cutoff1);
l4n::G2 sym_f2(&cutoff2, 0.15, 0.75);
l4n::G2 sym_f3(&cutoff3, 0.1, 0.2);
l4n::G3 sym_f4(&cutoff4, 0.3);
l4n::G4 sym_f5(&cutoff5, 0.05, true, 0.05);
l4n::G4 sym_f6(&cutoff5, 0.05, false, 0.05);
Martin Beseda
committed
Martin Beseda
committed
std::vector<l4n::SymmetryFunction*> helium_sym_funcs = {&sym_f1, &sym_f2, &sym_f3, &sym_f4, &sym_f5, &sym_f6};
Martin Beseda
committed
Martin Beseda
committed
l4n::Element helium = l4n::Element("He",
helium_sym_funcs);
std::unordered_map<l4n::ELEMENT_SYMBOL, l4n::Element*> elements;
elements[l4n::ELEMENT_SYMBOL::He] = &helium;
Martin Beseda
committed
Martin Beseda
committed
/* Read data */
l4n::XYZReader reader("../../data/HE21+T1.xyz");
Martin Beseda
committed
reader.read();
Martin Beseda
committed
std::cout << "Finished reading data" << std::endl;
Martin Beseda
committed
Martin Beseda
committed
std::shared_ptr<l4n::DataSet> ds = reader.get_acsf_data_set(elements);
Martin Beseda
committed
Martin Beseda
committed
/* Create a neural network */
std::unordered_map<l4n::ELEMENT_SYMBOL, std::vector<unsigned int>> n_hidden_neurons;
n_hidden_neurons[l4n::ELEMENT_SYMBOL::He] = {2, 1};
Martin Beseda
committed
Martin Beseda
committed
std::unordered_map<l4n::ELEMENT_SYMBOL, std::vector<l4n::NEURON_TYPE>> type_hidden_neurons;
type_hidden_neurons[l4n::ELEMENT_SYMBOL::He] = {l4n::NEURON_TYPE::LOGISTIC, l4n::NEURON_TYPE::LINEAR};
Martin Beseda
committed
Martin Beseda
committed
l4n::ACSFNeuralNetwork net(elements, *reader.get_element_list(), reader.contains_charge(), n_hidden_neurons, type_hidden_neurons);
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// l4n::NeuralNetwork net;
// std::vector<std::shared_ptr<l4n::NeuronLinear>> inps;
// std::vector<size_t> inps_inds;
// for(unsigned int i = 0; i < 126; i++) {
// std::shared_ptr<l4n::NeuronLinear> inp = std::make_shared<l4n::NeuronLinear>();
// inps.emplace_back(inp);
// inps_inds.emplace_back(net.add_neuron(inp, l4n::BIAS_TYPE::NO_BIAS));
// }
//
// net.specify_input_neurons(inps_inds);
//
// std::vector<std::shared_ptr<l4n::NeuronLogistic>> hids;
//
// std::vector<unsigned int> hids_idxs;
// size_t idx;
// unsigned int n_hidden = 5;
// for(unsigned int i = 0; i < n_hidden; i++) {
// std::shared_ptr<l4n::NeuronLogistic> hid = std::make_shared<l4n::NeuronLogistic>();
// hids.emplace_back(hid);
// idx = net.add_neuron(hid, l4n::BIAS_TYPE::NEXT_BIAS);
// hids_idxs.emplace_back(idx);
//
// for(unsigned int j = 0; j < 126; j++) {
// net.add_connection_simple(j, idx);
// }
// }
//
// std::shared_ptr<l4n::NeuronLinear> out = std::make_shared<l4n::NeuronLinear>();
// idx = net.add_neuron(out, l4n::BIAS_TYPE::NO_BIAS);
// std::vector<size_t> out_inds = {idx};
// for(unsigned int i = 0; i < n_hidden; i++) {
// net.add_connection_simple(hids_idxs.at(i), idx);
// }
// net.specify_output_neurons(out_inds);
Martin Beseda
committed
Martin Beseda
committed
l4n::MSE mse(&net, ds.get());
Martin Beseda
committed
Martin Beseda
committed
net.randomize_parameters();
double err1 = optimize_via_LBMQ(net, mse);
double err2 = optimize_via_gradient_descent(net, mse);
if(err2 > 0.00001) {
throw std::runtime_error("Training was incorrect!");
}
Martin Beseda
committed
/* Print fit comparison with real data */
std::vector<double> output;
output.resize(1);
for(auto e : *ds->get_data()) {
for(auto inp_e : e.first) {
std::cout << inp_e << " ";
}
std::cout << e.second.at(0) << " ";
net.eval_single(e.first, output);
std::cout << output.at(0) << std::endl;
}
Martin Beseda
committed
} catch (const std::exception& e) {
Martin Beseda
committed
return 0;
}