Newer
Older
//
// Created by martin on 14.11.18.
//
#include "CrossValidator.h"
Martin Beseda
committed
#include "message.h"
namespace lib4neuro {
LIB4NEURO_API CrossValidator::CrossValidator(ILearningMethods* optimizer, ErrorFunction* ef) {
this->optimizer = optimizer;
this->ef = ef;
}
Martin Beseda
committed
LIB4NEURO_API void CrossValidator::run_k_fold_test(unsigned int k, unsigned int tests_number, std::ofstream* results_file_path) {
//TODO do not duplicate code - write in a more elegant way
NeuralNetwork *net = this->ef->get_network_instance();
Martin Beseda
committed
double cv_err_sum = 0;
for(unsigned int i = 0; i < tests_number; i++) {
COUT_INFO("Cross-validation run " << i+1 << std::endl);
*results_file_path << "Cross-validation run " << i+1 << std::endl;
this->ef->divide_data_train_test(1.0/k);
*results_file_path << "Number of train data points: " << this->ef->get_dataset()->get_n_elements() << std::endl;
*results_file_path << "Number of test data points: " << this->ef->get_test_dataset()->get_n_elements() << std::endl;
net->randomize_parameters();
net->scale_parameters( 1.0 / (net->get_n_weights() + net->get_n_biases()));
this->optimizer->optimize(*this->ef);
/* Error evaluation and writing */
double err = this->ef->eval_on_test_data(results_file_path);
cv_err_sum += err;
COUT_INFO("CV error (run " << i+1 << "): " << err << std::endl << std::endl);
this->ef->return_full_data_set_for_training();
}
COUT_INFO("CV error mean: " << cv_err_sum/tests_number << std::endl);
*results_file_path << "CV error mean: " << cv_err_sum/tests_number << std::endl;
}
LIB4NEURO_API void CrossValidator::run_k_fold_test(unsigned int k, unsigned int tests_number, std::string results_file_path) {
NeuralNetwork *net = this->ef->get_network_instance();
double cv_err_sum = 0;
for(unsigned int i = 0; i < tests_number; i++) {
Martin Beseda
committed
COUT_INFO("Cross-validation run " << i+1 << std::endl);
this->ef->divide_data_train_test(1.0/k);
Martin Beseda
committed
COUT_DEBUG("Number of train data points: " << this->ef->get_dataset()->get_n_elements() << std::endl);
COUT_DEBUG("Number of test data points: " << this->ef->get_test_dataset()->get_n_elements() << std::endl);
net->randomize_parameters();
net->scale_parameters( 1.0 / (net->get_n_weights() + net->get_n_biases()));
this->optimizer->optimize(*this->ef);
Martin Beseda
committed
/* Error evaluation and writing */
double err;
if(results_file_path == "") {
err = this->ef->eval_on_test_data();
} else {
err = this->ef->eval_on_test_data(results_file_path + "_cv" + std::to_string(i) + ".dat");
}
cv_err_sum += err;
COUT_INFO("CV error (run " << i+1 << "): " << err << std::endl << std::endl);
this->ef->return_full_data_set_for_training();
}
Martin Beseda
committed
COUT_INFO("CV error mean: " << cv_err_sum/tests_number << std::endl);