Newer
Older
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 18.7.18 -
*/
Martin Beseda
committed
#include <boost/serialization/export.hpp>
Martin Beseda
committed
#include "NeuralNetworkSumSerialization.h"
#include "General/ExprtkWrapperSerialization.h"
Martin Beseda
committed
BOOST_CLASS_EXPORT_IMPLEMENT(lib4neuro::NeuralNetworkSum);
Martin Beseda
committed
namespace lib4neuro {
Martin Beseda
committed
NeuralNetworkSum::NeuralNetworkSum() {
this->summand = nullptr;
Martin Beseda
committed
this->summand_coefficient = nullptr;
Martin Beseda
committed
NeuralNetworkSum::~NeuralNetworkSum() {
if (this->summand) {
delete this->summand;
this->summand = nullptr;
Martin Beseda
committed
if (this->summand_coefficient) {
Martin Beseda
committed
for (auto el: *this->summand_coefficient) {
delete el;
}
Martin Beseda
committed
delete this->summand_coefficient;
this->summand_coefficient = nullptr;
}
Martin Beseda
committed
void NeuralNetworkSum::add_network(NeuralNetwork *net, std::string expression_string) {
if (!this->summand) {
this->summand = new std::vector<NeuralNetwork *>(0);
}
this->summand->push_back(net);
if (!this->summand_coefficient) {
this->summand_coefficient = new std::vector<ExprtkWrapper *>(0);
}
this->summand_coefficient->push_back(new ExprtkWrapper(expression_string));
Martin Beseda
committed
void NeuralNetworkSum::eval_single(std::vector<double> &input, std::vector<double> &output,
std::vector<double>* custom_weights_and_biases) {
Martin Beseda
committed
std::vector<double> mem_output(output.size());
std::fill(output.begin(), output.end(), 0.0);
Martin Beseda
committed
NeuralNetwork *SUM;

Michal Kravcenko
committed
Martin Beseda
committed
for (size_t ni = 0; ni < this->summand->size(); ++ni) {
SUM = this->summand->at(ni);

Michal Kravcenko
committed
Martin Beseda
committed
if (SUM) {
this->summand->at(ni)->eval_single(input, mem_output, custom_weights_and_biases);

Michal Kravcenko
committed
Martin Beseda
committed
double alpha = this->summand_coefficient->at(ni)->eval(input);

Michal Kravcenko
committed
Martin Beseda
committed
for (size_t j = 0; j < output.size(); ++j) {
output[j] += mem_output[j] * alpha;
}
} else {
//TODO assume the result can be a vector of doubles
double alpha = this->summand_coefficient->at(ni)->eval(input);
Martin Beseda
committed
for (size_t j = 0; j < output.size(); ++j) {
output[j] += alpha;
}

Michal Kravcenko
committed
}
Martin Beseda
committed
void NeuralNetworkSum::add_to_gradient_single(std::vector<double> &input, std::vector<double> &error_derivative,
double error_scaling, std::vector<double> &gradient) {

Michal Kravcenko
committed

Michal Kravcenko
committed
for (size_t ni = 0; ni < this->summand->size(); ++ni) {
SUM = this->summand->at(ni);

Michal Kravcenko
committed
if (SUM) {
double alpha = this->summand_coefficient->at(ni)->eval(input);
SUM->add_to_gradient_single(input, error_derivative, alpha * error_scaling, gradient);
}

Michal Kravcenko
committed
}
}
Martin Beseda
committed
size_t NeuralNetworkSum::get_n_weights() {
//TODO insufficient solution, assumes the networks share weights
if (this->summand) {
return this->summand->at(0)->get_n_weights();
}
Martin Beseda
committed
return 0;
Martin Beseda
committed
size_t NeuralNetworkSum::get_n_biases() {
//TODO insufficient solution, assumes the networks share weights
if (this->summand) {
return this->summand->at(0)->get_n_biases();
}
Martin Beseda
committed
return 0;
Martin Beseda
committed
size_t NeuralNetworkSum::get_n_inputs() {
//TODO insufficient solution, assumes the networks share weights
if (this->summand) {
return this->summand->at(0)->get_n_inputs();
}
Martin Beseda
committed
return 0;
Martin Beseda
committed
size_t NeuralNetworkSum::get_n_neurons() {
//TODO insufficient solution, assumes the networks share weights
if (this->summand) {
return this->summand->at(0)->get_n_neurons();
}
Martin Beseda
committed
return 0;
Martin Beseda
committed
size_t NeuralNetworkSum::get_n_outputs() {
//TODO insufficient solution, assumes the networks share weights
if (this->summand) {
return this->summand->at(0)->get_n_outputs();
}
Martin Beseda
committed
return 0;
std::vector<double> *NeuralNetworkSum::get_parameter_ptr_weights() {
if (this->summand) {
return this->summand->at(0)->get_parameter_ptr_weights();
}

Michal Kravcenko
committed

Michal Kravcenko
committed
}
std::vector<double> *NeuralNetworkSum::get_parameter_ptr_biases() {
if (this->summand) {
return this->summand->at(0)->get_parameter_ptr_biases();
}

Michal Kravcenko
committed

Michal Kravcenko
committed
}
void NeuralNetworkSum::eval_single_debug(std::vector<double> &input, std::vector<double> &output,
std::vector<double>* custom_weights_and_biases) {
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
std::vector<double> mem_output(output.size());
std::fill(output.begin(), output.end(), 0.0);
NeuralNetwork *SUM;
for (size_t ni = 0; ni < this->summand->size(); ++ni) {
SUM = this->summand->at(ni);
if (SUM) {
this->summand->at(ni)->eval_single_debug(input, mem_output, custom_weights_and_biases);
double alpha = this->summand_coefficient->at(ni)->eval(input);
for (size_t j = 0; j < output.size(); ++j) {
output[j] += mem_output[j] * alpha;
}
} else {
//TODO assume the result can be a vector of doubles
double alpha = this->summand_coefficient->at(ni)->eval(input);
for (size_t j = 0; j < output.size(); ++j) {
output[j] += alpha;
}
}
}
}