Something went wrong on our end
-
Martin Beseda authoredMartin Beseda authored
NeuralNetwork.cpp 25.27 KiB
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 13.6.18 -
*/
#include "NeuralNetwork.h"
BOOST_CLASS_EXPORT(NeuronBinary);
BOOST_CLASS_EXPORT(NeuronConstant);
BOOST_CLASS_EXPORT(NeuronLinear);
BOOST_CLASS_EXPORT(NeuronLogistic);
BOOST_CLASS_EXPORT(NeuronLogistic_d1);
BOOST_CLASS_EXPORT(NeuronLogistic_d2);
BOOST_CLASS_EXPORT(ConnectionFunctionGeneral);
BOOST_CLASS_EXPORT(ConnectionFunctionIdentity);
NeuralNetwork::NeuralNetwork() {
this->neurons = new std::vector<Neuron*>(0);
this->neuron_biases = new std::vector<double>(0);
this->neuron_potentials = new std::vector<double>(0);
this->neuron_bias_indices = new std::vector<int>(0);
this->connection_weights =new std::vector<double>(0);
this->connection_list = new std::vector<ConnectionFunctionGeneral*>(0);
this->inward_adjacency = new std::vector<std::vector<std::pair<size_t, size_t>>*>(0);
this->outward_adjacency = new std::vector<std::vector<std::pair<size_t, size_t>>*>(0);
this->neuron_layers_feedforward = new std::vector<std::vector<size_t>*>(0);
this->neuron_layers_feedbackward = new std::vector<std::vector<size_t>*>(0);
this->input_neuron_indices = new std::vector<size_t>(0);
this->output_neuron_indices = new std::vector<size_t>(0);
this->delete_weights = true;
this->delete_biases = true;
this->layers_analyzed = false;
}
NeuralNetwork::NeuralNetwork(std::string filepath) {
std::ifstream ifs(filepath);
boost::archive::text_iarchive ia(ifs);
ia >> *this;
ifs.close();
}
NeuralNetwork::~NeuralNetwork() {
if(this->neurons){
for( auto n: *(this->neurons) ){
delete n;
n = nullptr;
}
delete this->neurons;
this->neurons = nullptr;
}
if(this->neuron_potentials){
delete this->neuron_potentials;
this->neuron_potentials = nullptr;
}
if(this->neuron_bias_indices){
delete this->neuron_bias_indices;
this->neuron_bias_indices = nullptr;
}
if(this->output_neuron_indices){
delete this->output_neuron_indices;
this->output_neuron_indices = nullptr;
}
if(this->input_neuron_indices){
delete this->input_neuron_indices;
this->input_neuron_indices = nullptr;
}
if(this->connection_weights && this->delete_weights){
delete this->connection_weights;
this->connection_weights = nullptr;
}
if(this->neuron_biases && this->delete_biases){
delete this->neuron_biases;
this->neuron_biases = nullptr;
}
if(this->connection_list){
if(this->delete_weights){
for(auto c: *this->connection_list){
delete c;
c = nullptr;
}
}
delete this->connection_list;
this->connection_list = nullptr;
}
if(this->inward_adjacency){
for(auto e: *this->inward_adjacency){
if(e){
delete e;
e = nullptr;
}
}
delete this->inward_adjacency;
this->inward_adjacency = nullptr;
}
if(this->outward_adjacency){
for(auto e: *this->outward_adjacency){
if(e){
delete e;
e = nullptr;
}
}
delete this->outward_adjacency;
this->outward_adjacency = nullptr;
}
if(this->neuron_layers_feedforward){
for(auto e: *this->neuron_layers_feedforward){
delete e;
e = nullptr;
}
delete this->neuron_layers_feedforward;
this->neuron_layers_feedforward = nullptr;
}
if(this->neuron_layers_feedbackward){
for(auto e: *this->neuron_layers_feedbackward){
delete e;
e = nullptr;
}
delete this->neuron_layers_feedbackward;
this->neuron_layers_feedbackward = nullptr;
}
}
NeuralNetwork* NeuralNetwork::get_subnet(std::vector<size_t> &input_neuron_indices, std::vector<size_t> &output_neuron_indices){
NeuralNetwork *output_net = nullptr;
// TODO rework due to the changed structure of the class
// Neuron * active_neuron, * target_neuron;
//
// size_t n = this->neurons->size();
// bool *part_of_subnetwork = new bool[n];
// std::fill(part_of_subnetwork, part_of_subnetwork + n, false);
//
// bool *is_reachable_from_source = new bool[n];
// bool *is_reachable_from_destination = new bool[n];
// std::fill(is_reachable_from_source, is_reachable_from_source + n, false);
// std::fill(is_reachable_from_destination, is_reachable_from_destination + n, false);
//
// bool *visited_neurons = new bool[n];
// std::fill(visited_neurons, visited_neurons + n, false);
//
// size_t active_set_size[2];
// active_set_size[0] = 0;
// active_set_size[1] = 0;
// size_t * active_neuron_set = new size_t[2 * n];
// size_t idx1 = 0, idx2 = 1;
//
// /* MAPPING BETWEEN NEURONS AND THEIR INDICES */
// size_t idx = 0, idx_target;
// for(Neuron *v: *this->neurons){
// v->set_idx( idx );
// idx++;
// }
//
// /* INITIAL STATE FOR THE FORWARD PASS */
// for(size_t i: input_neuron_indices ){
//
// if( i < 0 || i >= n){
// //invalid index
// continue;
// }
// active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
// active_set_size[idx1]++;
//
// visited_neurons[i] = true;
// }
//
// /* FORWARD PASS */
// while(active_set_size[idx1] > 0){
//
// //we iterate through the active neurons and propagate the signal
// for(int i = 0; i < active_set_size[idx1]; ++i){
// idx = active_neuron_set[i];
//
// is_reachable_from_source[ idx ] = true;
//
// active_neuron = this->neurons->at( idx );
//
// for(Connection* connection: *(active_neuron->get_connections_out())){
//
// target_neuron = connection->get_neuron_out( );
// idx_target = target_neuron->get_idx( );
//
// if( visited_neurons[idx_target] ){
// //this neuron was already analyzed
// continue;
// }
//
// visited_neurons[idx_target] = true;
// active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
// active_set_size[idx2]++;
// }
// }
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
// active_set_size[idx2] = 0;
// }
//
//
// /* INITIAL STATE FOR THE FORWARD PASS */
// active_set_size[0] = active_set_size[1] = 0;
// std::fill(visited_neurons, visited_neurons + n, false);
//
// for(size_t i: output_neuron_indices ){
//
// if( i < 0 || i >= n){
// //invalid index
// continue;
// }
// active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
// active_set_size[idx1]++;
//
// visited_neurons[i] = true;
// }
//
// /* BACKWARD PASS */
// size_t n_new_neurons = 0;
// while(active_set_size[idx1] > 0){
//
// //we iterate through the active neurons and propagate the signal
// for(int i = 0; i < active_set_size[idx1]; ++i){
// idx = active_neuron_set[i];
//
// is_reachable_from_destination[ idx ] = true;
//
// active_neuron = this->neurons->at( idx );
//
// if(is_reachable_from_source[ idx ]){
// n_new_neurons++;
// }
//
// for(Connection* connection: *(active_neuron->get_connections_in())){
//
// target_neuron = connection->get_neuron_in( );
// idx_target = target_neuron->get_idx( );
//
// if( visited_neurons[idx_target] ){
// //this neuron was already analyzed
// continue;
// }
//
// visited_neurons[idx_target] = true;
// active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
// active_set_size[idx2]++;
// }
// }
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
// active_set_size[idx2] = 0;
// }
//
// /* FOR CONSISTENCY REASONS */
// for(size_t in: input_neuron_indices){
// if( !is_reachable_from_destination[in] ){
// n_new_neurons++;
// }
// is_reachable_from_destination[in] = true;
// }
// /* FOR CONSISTENCY REASONS */
// for(size_t in: output_neuron_indices){
// if( !is_reachable_from_source[in] ){
// n_new_neurons++;
// }
// is_reachable_from_source[in] = true;
// }
//
// /* WE FORM THE SET OF NEURONS IN THE OUTPUT NETWORK */
// if(n_new_neurons > 0){
//// printf("Number of new neurons: %d\n", n_new_neurons);
// output_net = new NeuralNetwork();
// output_net->set_weight_array( this->connection_weights );
//
// std::vector<size_t > local_inputs(0), local_outputs(0);
// local_inputs.reserve(input_neuron_indices.size());
// local_outputs.reserve(output_neuron_indices.size());
//
// std::vector<Neuron*> local_n_arr(0);
// local_n_arr.reserve( n_new_neurons );
//
// std::vector<Neuron*> local_local_n_arr(0);
// local_local_n_arr.reserve( n_new_neurons );
//
// int * neuron_local_mapping = new int[ n ];
// std::fill(neuron_local_mapping, neuron_local_mapping + n, -1);
// idx = 0;
// for(size_t i = 0; i < n; ++i){
// if(is_reachable_from_source[i] && is_reachable_from_destination[i]){
// neuron_local_mapping[i] = (int)idx;
// idx++;
//
// Neuron *new_neuron = this->neurons->at(i)->get_copy( );
//
// output_net->add_neuron( new_neuron );
// local_local_n_arr.push_back( new_neuron );
// local_n_arr.push_back( this->neurons->at(i) );
// }
// }
// for(size_t in: input_neuron_indices){
// local_inputs.push_back(neuron_local_mapping[in]);
// }
// for(size_t in: output_neuron_indices){
// local_outputs.push_back(neuron_local_mapping[in]);
// }
//
//// printf("%d\n", local_n_arr.size());
//// printf("inputs: %d, outputs: %d\n", local_inputs.size(), local_outputs.size());
// int local_idx_1, local_idx_2;
// for(Neuron* source_neuron: local_n_arr){
// //we also add the relevant edges
// local_idx_1 = neuron_local_mapping[source_neuron->get_idx()];
//
// for(Connection* connection: *(source_neuron->get_connections_out( ))){
// target_neuron = connection->get_neuron_out();
//
// local_idx_2 = neuron_local_mapping[target_neuron->get_idx()];
// if(local_idx_2 >= 0){
// //this edge is part of the subnetwork
// Connection* new_connection = connection->get_copy( local_local_n_arr[local_idx_1], local_local_n_arr[local_idx_2] );
//
// local_local_n_arr[local_idx_1]->add_connection_out(new_connection);
// local_local_n_arr[local_idx_2]->add_connection_in(new_connection);
//
//// printf("adding a connection between neurons %d, %d\n", local_idx_1, local_idx_2);
// }
//
// }
//
// }
// output_net->specify_input_neurons(local_inputs);
// output_net->specify_output_neurons(local_outputs);
//
//
// delete [] neuron_local_mapping;
// }
//
// delete [] is_reachable_from_source;
// delete [] is_reachable_from_destination;
// delete [] part_of_subnetwork;
// delete [] visited_neurons;
// delete [] active_neuron_set;
//
//
return output_net;
}
size_t NeuralNetwork::add_neuron(Neuron* n, BIAS_TYPE bt, size_t bias_idx) {
if( bt == BIAS_TYPE::NO_BIAS ){
this->neuron_bias_indices->push_back(-1);
}
else if( bt == BIAS_TYPE::NEXT_BIAS ){
this->neuron_bias_indices->push_back((int)this->neuron_biases->size());
this->neuron_biases->resize(this->neuron_biases->size() + 1);
}
else if( bt == BIAS_TYPE::EXISTING_BIAS ){
if( bias_idx >= this->neuron_biases->size()){
std::cerr << "The supplied bias index is too large!\n" << std::endl;
}
this->neuron_bias_indices->push_back((int)bias_idx);
}
this->outward_adjacency->push_back(new std::vector<std::pair<size_t, size_t>>(0));
this->inward_adjacency->push_back(new std::vector<std::pair<size_t, size_t>>(0));
this->neurons->push_back(n);
this->layers_analyzed = false;
return this->neurons->size() - 1;
}
size_t NeuralNetwork::add_connection_simple( size_t n1_idx, size_t n2_idx, SIMPLE_CONNECTION_TYPE sct, size_t weight_idx ) {
ConnectionFunctionIdentity *con_weight_u1u2;
if( sct == SIMPLE_CONNECTION_TYPE::UNITARY_WEIGHT ){
con_weight_u1u2 = new ConnectionFunctionIdentity( );
}
else{
if( sct == SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT ){
weight_idx = this->connection_weights->size();
this->connection_weights->resize(weight_idx + 1);
}
else if( sct == SIMPLE_CONNECTION_TYPE::EXISTING_WEIGHT ){
if( weight_idx >= this->connection_weights->size()){
std::cerr << "The supplied connection weight index is too large!\n" << std::endl;
}
}
con_weight_u1u2 = new ConnectionFunctionIdentity( weight_idx );
}
size_t conn_idx = this->add_new_connection_to_list(con_weight_u1u2);
this->add_outward_connection(n1_idx, n2_idx, conn_idx);
this->add_inward_connection(n2_idx, n1_idx, conn_idx);
this->layers_analyzed = false;
return this->connection_list->size() - 1;
}
void NeuralNetwork::add_existing_connection(size_t n1_idx, size_t n2_idx, size_t connection_idx,
NeuralNetwork &parent_network) {
size_t conn_idx = this->add_new_connection_to_list(parent_network.connection_list->at( connection_idx ));
this->add_outward_connection(n1_idx, n2_idx, conn_idx);
this->add_inward_connection(n2_idx, n1_idx, conn_idx);
this->layers_analyzed = false;
}
void NeuralNetwork::copy_parameter_space(std::vector<double> *parameters) {
if(parameters != nullptr){
for(unsigned int i = 0; i < this->connection_weights->size(); ++i){
(*this->connection_weights)[i] = (*parameters)[i];
}
for(unsigned int i = 0; i < this->neuron_biases->size(); ++i){
(*this->neuron_biases)[i] = (*parameters)[i + this->connection_weights->size()];
}
}
}
void NeuralNetwork::set_parameter_space_pointers(NeuralNetwork &parent_network) {
if(this->connection_weights){
delete connection_weights;
}
if(this->neuron_biases){
delete this->neuron_biases;
}
this->connection_weights = parent_network.connection_weights;
this->neuron_biases = parent_network.neuron_biases;
this->delete_biases = false;
this->delete_weights = false;
}
void NeuralNetwork::eval_single(std::vector<double> &input, std::vector<double> &output, std::vector<double> * custom_weights_and_biases) {
if((this->input_neuron_indices->size() * this->output_neuron_indices->size()) <= 0){
std::cerr << "Input and output neurons have not been specified\n" << std::endl;
exit(-1);
}
if(this->input_neuron_indices->size() != input.size()){
std::cerr << "Error, input size != Network input size\n" << std::endl;
exit(-1);
}
if(this->output_neuron_indices->size() != output.size()){
std::cerr << "Error, output size != Network output size\n" << std::endl;
exit(-1);
}
double potential, bias;
int bias_idx;
this->copy_parameter_space( custom_weights_and_biases );
this->analyze_layer_structure();
/* reset of the output and the neuron potentials */
std::fill(output.begin(), output.end(), 0.0);
std::fill(this->neuron_potentials->begin(), this->neuron_potentials->end(), 0.0);
/* set the potentials of the input neurons */
for(size_t i = 0; i < this->input_neuron_indices->size(); ++i){
this->neuron_potentials->at( this->input_neuron_indices->at(i) ) = input[ i ];
}
/* we iterate through all the feed-forward layers and transfer the signals */
for( auto layer: *this->neuron_layers_feedforward){
/* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */
for( auto si: *layer ){
bias = 0.0;
bias_idx = this->neuron_bias_indices->at( si );
if( bias_idx >= 0 ){
bias = this->neuron_biases->at( bias_idx );
}
potential = this->neurons->at(si)->activate(this->neuron_potentials->at( si ), bias);
for(auto c: *this->outward_adjacency->at( si )){
size_t ti = c.first;
size_t ci = c.second;
this->neuron_potentials->at( ti ) += this->connection_list->at( ci )->eval( *this->connection_weights ) * potential;
}
}
}
unsigned int i = 0;
for(auto oi: *this->output_neuron_indices){
bias = 0.0;
bias_idx = this->neuron_bias_indices->at( oi );
if( bias_idx >= 0 ){
bias = this->neuron_biases->at( bias_idx );
}
output[i] = this->neurons->at( oi )->activate( this->neuron_potentials->at( oi ), bias );
++i;
}
}
void NeuralNetwork::randomize_weights( ) {
boost::random::mt19937 gen;
// Init weight guess ("optimal" for logistic activation functions)
double r = 4 * sqrt(6./(this->connection_weights->size()));
boost::random::uniform_real_distribution<> dist(-r, r);
for(size_t i = 0; i < this->connection_weights->size(); i++) {
this->connection_weights->at(i) = dist(gen);
}
}
void NeuralNetwork::randomize_biases( ) {
boost::random::mt19937 gen;
// Init weight guess ("optimal" for logistic activation functions)
boost::random::uniform_real_distribution<> dist(-1, 1);
for(size_t i = 0; i < this->neuron_biases->size(); i++) {
this->neuron_biases->at(i) = dist(gen);
}
}
size_t NeuralNetwork::get_n_inputs() {
return this->input_neuron_indices->size();
}
size_t NeuralNetwork::get_n_outputs() {
return this->output_neuron_indices->size();
}
size_t NeuralNetwork::get_n_weights() {
return this->connection_weights->size();
}
size_t NeuralNetwork::get_n_biases() {
return this->neuron_biases->size();
}
int NeuralNetwork::get_neuron_bias_index(size_t neuron_idx) {
return this->neuron_bias_indices->at( neuron_idx );
}
size_t NeuralNetwork::get_n_neurons() {
return this->neurons->size();
}
void NeuralNetwork::specify_input_neurons(std::vector<size_t> &input_neurons_indices) {
if( !this->input_neuron_indices ){
this->input_neuron_indices = new std::vector<size_t>(input_neurons_indices);
}
else{
delete this->input_neuron_indices;
this->input_neuron_indices = new std::vector<size_t>(input_neurons_indices);
}
}
void NeuralNetwork::specify_output_neurons(std::vector<size_t> &output_neurons_indices) {
if( !this->output_neuron_indices ){
this->output_neuron_indices = new std::vector<size_t>(output_neurons_indices);
}
else{
delete this->output_neuron_indices;
this->output_neuron_indices = new std::vector<size_t>(output_neurons_indices);
}
}
void NeuralNetwork::print_weights() {
printf("Connection weights: ");
if(this->connection_weights){
for( size_t i = 0; i < this->connection_weights->size() - 1; ++i){
printf("%f, ", this->connection_weights->at(i));
}
printf("%f", this->connection_weights->at(this->connection_weights->size() - 1));
}
printf("\n");
}
void NeuralNetwork::print_stats(){
std::cout << "Number of neurons: " << this->neurons->size() << std::endl
<< "Number of connections: " << this->connection_list->size() << std::endl
<< "Number of active weights: " << this->connection_weights->size() << std::endl
<< "Number of active biases: " << this->neuron_biases->size() << std::endl;
}
std::vector<double>* NeuralNetwork::get_parameter_ptr_biases() {
return this->neuron_biases;
}
std::vector<double>* NeuralNetwork::get_parameter_ptr_weights() {
return this->connection_weights;
}
size_t NeuralNetwork::add_new_connection_to_list(ConnectionFunctionGeneral *con) {
this->connection_list->push_back(con);
return this->connection_list->size() - 1;
}
void NeuralNetwork::add_inward_connection(size_t s, size_t t, size_t con_idx) {
if(!this->inward_adjacency->at(s)){
this->inward_adjacency->at(s) = new std::vector<std::pair<size_t, size_t>>(0);
}
this->inward_adjacency->at(s)->push_back(std::pair(t, con_idx));
}
void NeuralNetwork::add_outward_connection(size_t s, size_t t, size_t con_idx) {
if(!this->outward_adjacency->at(s)){
this->outward_adjacency->at(s) = new std::vector<std::pair<size_t, size_t>>(0);
}
this->outward_adjacency->at(s)->push_back(std::pair(t, con_idx));
}
void NeuralNetwork::analyze_layer_structure() {
if(this->layers_analyzed){
//nothing to do
return;
}
/* buffer preparation */
this->neuron_potentials->resize(this->get_n_neurons());
/* space allocation */
if(this->neuron_layers_feedforward){
for(auto e: *this->neuron_layers_feedforward){
delete e;
e = nullptr;
}
delete this->neuron_layers_feedforward;
this->neuron_layers_feedforward = nullptr;
}
if(this->neuron_layers_feedbackward){
for(auto e: *this->neuron_layers_feedbackward){
delete e;
e = nullptr;
}
delete this->neuron_layers_feedbackward;
this->neuron_layers_feedbackward = nullptr;
}
this->neuron_layers_feedforward = new std::vector<std::vector<size_t>*>(0);
this->neuron_layers_feedbackward = new std::vector<std::vector<size_t>*>(0);
auto n = this->neurons->size();
/* helpful counters */
std::vector<size_t> inward_saturation(n);
std::vector<size_t> outward_saturation(n);
std::fill(inward_saturation.begin(), inward_saturation.end(), 0);
std::fill(outward_saturation.begin(), outward_saturation.end(), 0);
for(unsigned int i = 0; i < n; ++i){
if(this->inward_adjacency->at(i)){
inward_saturation[i] = this->inward_adjacency->at(i)->size();
}
if(this->outward_adjacency->at(i)){
outward_saturation[i] = this->outward_adjacency->at(i)->size();
}
}
std::vector<size_t> active_eval_set(2 * n);
size_t active_set_size[2];
/* feedforward analysis */
active_set_size[0] = 0;
active_set_size[1] = 0;
size_t idx1 = 0, idx2 = 1;
active_set_size[0] = this->get_n_inputs();
size_t i = 0;
for(i = 0; i < this->get_n_inputs(); ++i){
active_eval_set[i] = this->input_neuron_indices->at(i);
}
size_t active_ni;
while(active_set_size[idx1] > 0){
/* we add the current active set as the new outward layer */
std::vector<size_t> *new_feedforward_layer = new std::vector<size_t>(active_set_size[idx1]);
this->neuron_layers_feedforward->push_back( new_feedforward_layer );
//we iterate through the active neurons and propagate the signal
for(i = 0; i < active_set_size[idx1]; ++i){
active_ni = active_eval_set[i + n * idx1];
new_feedforward_layer->at( i ) = active_ni;
if(!this->outward_adjacency->at(active_ni)){
continue;
}
for(auto ni: *(this->outward_adjacency->at(active_ni))){
inward_saturation[ni.first]--;
if(inward_saturation[ni.first] == 0){
active_eval_set[active_set_size[idx2] + n * idx2] = ni.first;
active_set_size[idx2]++;
}
}
}
idx1 = idx2;
idx2 = (idx1 + 1) % 2;
active_set_size[idx2] = 0;
}
/* feed backward analysis */
active_set_size[0] = 0;
active_set_size[1] = 0;
idx1 = 0;
idx2 = 1;
active_set_size[0] = this->get_n_outputs();
for(i = 0; i < this->get_n_outputs(); ++i){
active_eval_set[i] = this->output_neuron_indices->at(i);
}
while(active_set_size[idx1] > 0){
/* we add the current active set as the new outward layer */
std::vector<size_t> *new_feedbackward_layer = new std::vector<size_t>(active_set_size[idx1]);
this->neuron_layers_feedbackward->push_back( new_feedbackward_layer );
//we iterate through the active neurons and propagate the signal backward
for(i = 0; i < active_set_size[idx1]; ++i){
active_ni = active_eval_set[i + n * idx1];
new_feedbackward_layer->at( i ) = active_ni;
if(!this->inward_adjacency->at(active_ni)){
continue;
}
for(auto ni: *(this->inward_adjacency->at(active_ni))){
outward_saturation[ni.first]--;
if(outward_saturation[ni.first] == 0){
active_eval_set[active_set_size[idx2] + n * idx2] = ni.first;
active_set_size[idx2]++;
}
}
}
idx1 = idx2;
idx2 = (idx1 + 1) % 2;
active_set_size[idx2] = 0;
}
this->layers_analyzed = true;
}
void NeuralNetwork::save_text(std::string filepath) {
std::ofstream ofs(filepath);
{
boost::archive::text_oarchive oa(ofs);
oa << *this;
ofs.close();
}
}