Something went wrong on our end
-
Michal Kravcenko authoredMichal Kravcenko authored
seminar.cpp 4.05 KiB
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 10.9.18 -
*/
#include <random>
#include <iostream>
#include <fstream>
#include "4neuro.h"
#include "../Solvers/DESolver.h"
int main() {
std::cout << std::endl << "Running lib4neuro Moldyn Seminar example" << std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
l4n::NeuralNetwork XOR;
unsigned int i1 = XOR.add_neuron( new l4n::NeuronLinear( ), l4n::BIAS_TYPE::NO_BIAS );
unsigned int i2 = XOR.add_neuron( new l4n::NeuronLinear( ), l4n::BIAS_TYPE::NO_BIAS );
unsigned int h1 = XOR.add_neuron( new l4n::NeuronLogistic( ) );
unsigned int h2 = XOR.add_neuron( new l4n::NeuronLogistic( ) );
unsigned int o1 = XOR.add_neuron( new l4n::NeuronLinear( ), l4n::BIAS_TYPE::NO_BIAS );
XOR.add_connection_simple( i1, h1 );
XOR.add_connection_simple( i2, h1 );
XOR.add_connection_simple( i1, h2 );
XOR.add_connection_simple( i2, h2 );
XOR.add_connection_simple( h1, o1 );
XOR.add_connection_simple( h2, o1 );
/* TRAIN DATA DEFINITION */
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec;
std::vector<double> inp, out;
inp = {0, 0};
out = {0};
data_vec.emplace_back(std::make_pair(inp, out));
inp = {0, 1};
out = {1};
data_vec.emplace_back(std::make_pair(inp, out));
inp = {1, 0};
out = {1};
data_vec.emplace_back(std::make_pair(inp, out));
inp = {1, 1};
out = {0};
data_vec.emplace_back(std::make_pair(inp, out));
l4n::DataSet ds(&data_vec);
/* specification of the input/output neurons */
std::vector<size_t> net_input_neurons_indices(2);
std::vector<size_t> net_output_neurons_indices(1);
net_input_neurons_indices[0] = i1;
net_input_neurons_indices[1] = i2;
net_output_neurons_indices[0] = o1;
XOR.specify_input_neurons(net_input_neurons_indices);
XOR.specify_output_neurons(net_output_neurons_indices);
/* ERROR FUNCTION SPECIFICATION */
l4n::MSE mse(&XOR, &ds);
/* TRAINING METHOD SETUP */
std::vector<double> domain_bounds(2 * (XOR.get_n_weights() + XOR.get_n_biases()));
for(size_t i = 0; i < domain_bounds.size() / 2; ++i){
domain_bounds[2 * i] = -10;
domain_bounds[2 * i + 1] = 10;
}
double c1 = 1.7;
double c2 = 1.7;
double w = 0.7;
size_t n_particles = 50;
size_t iter_max = 1000;
/* if the maximal velocity from the previous step is less than 'gamma' times the current maximal velocity, then one
* terminating criterion is met */
double gamma = 0.5;
/* if 'delta' times 'n' particles are in the centroid neighborhood given by the radius 'epsilon', then the second
* terminating criterion is met ('n' is the total number of particles) */
double epsilon = 0.02;
double delta = 0.7;
l4n::ParticleSwarm swarm_01(
&domain_bounds,
c1,
c2,
w,
gamma,
epsilon,
delta,
n_particles,
iter_max
);
swarm_01.optimize( mse );
std::vector<double> *parameters = swarm_01.get_parameters( );
XOR.copy_parameter_space(parameters);
/* ERROR CALCULATION */
double error = 0.0;
inp = {0, 0};
XOR.eval_single( inp, out );
error += (0 - out[0]) * (0 - out[0]);
std::cout << "x = (0, 0), expected output: 0, real output: " << out[0] << std::endl;
inp = {0, 1};
XOR.eval_single( inp, out );
error += (1 - out[0]) * (1 - out[0]);
std::cout << "x = (0, 1), expected output: 1, real output: " << out[0] << std::endl;
inp = {1, 0};
XOR.eval_single( inp, out );
error += (1 - out[0]) * (1 - out[0]);
std::cout << "x = (1, 0), expected output: 1, real output: " << out[0] << std::endl;
inp = {1, 1};
XOR.eval_single( inp, out );
error += (0 - out[0]) * (0 - out[0]);
std::cout << "x = (1, 1), expected output: 0, real output: " << out[0] << std::endl;
return 0;
}