Something went wrong on our end
-
Martin Beseda authoredMartin Beseda authored
ErrorFunctions_test.cpp 6.32 KiB
/**
* DESCRIPTION OF THE CLASS
*
* @author David Vojtek
* @date 2018
*/
#define BOOST_TEST_MODULE ErrorFunctions_test
#include "boost_unit_tests_preamble.h"
#include "../ErrorFunction/ErrorFunctions.h"
using namespace lib4neuro;
/**
* Boost testing suite for testing ErrorFunction.h
* doesn't test inherited methods
*/
BOOST_AUTO_TEST_SUITE(ErrorFunctions_test);
BOOST_AUTO_TEST_CASE(ErrorFunction_MSE_Construction_Test) {
NeuralNetwork network;
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec;
std::vector<double> inp, out;
for (int i = 0; i < 3; i++) {
inp.push_back(i);
out.push_back(i + 4);
}
data_vec.emplace_back(std::make_pair(inp, out));
DataSet dataSet(&data_vec);
BOOST_CHECK_NO_THROW(MSE mse(&network, &dataSet));
}
BOOST_AUTO_TEST_CASE(ErrorFunction_MSE_Eval_Test) {
Neuron *n1 = new NeuronLinear();
Neuron *n2 = new NeuronLinear();
NeuralNetwork network;
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec;
std::vector<double> inp, out;
for (int i = 0; i < 1; i++) {
inp.push_back(i);
out.push_back(i + 4);
}
data_vec.emplace_back(std::make_pair(inp, out));
network.add_neuron(n1);
network.add_neuron(n2);
network.add_connection_simple(0, 1, SIMPLE_CONNECTION_TYPE::UNITARY_WEIGHT, 2.5);
network.randomize_weights();
std::vector<size_t> net_input_neurons_indices(1);
std::vector<size_t> net_output_neurons_indices(1);
net_input_neurons_indices[0] = 0;
net_output_neurons_indices[0] = 1;
network.specify_input_neurons(net_input_neurons_indices);
network.specify_output_neurons(net_output_neurons_indices);
DataSet dataSet(&data_vec);
std::vector<double> weights;
weights.push_back(1);
MSE mse(&network, &dataSet);
BOOST_CHECK_EQUAL(9, mse.eval(&weights));
}
BOOST_AUTO_TEST_CASE(ErrorFunction_MSE_Get_dimension_test) {
Neuron *n1 = new NeuronLinear();
Neuron *n2 = new NeuronLinear();
NeuralNetwork network;
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec;
std::vector<double> inp, out;
for (int i = 0; i < 1; i++) {
inp.push_back(i);
out.push_back(i + 4);
}
data_vec.emplace_back(std::make_pair(inp, out));
network.add_neuron(n1);
network.add_neuron(n2);
network.add_connection_simple(0, 1, SIMPLE_CONNECTION_TYPE::UNITARY_WEIGHT, 2.5);
network.randomize_weights();
std::vector<size_t> net_input_neurons_indices(1);
std::vector<size_t> net_output_neurons_indices(1);
net_input_neurons_indices[0] = 0;
net_output_neurons_indices[0] = 1;
network.specify_input_neurons(net_input_neurons_indices);
network.specify_output_neurons(net_output_neurons_indices);
DataSet dataSet(&data_vec);
MSE mse(&network, &dataSet);
BOOST_CHECK_EQUAL(2, mse.get_dimension());
}
BOOST_AUTO_TEST_CASE(ErrorFunction_MSE_SUM_Construction_Test) {
BOOST_CHECK_NO_THROW(ErrorSum mse_sum);
}
BOOST_AUTO_TEST_CASE(ErrorFunction_MSE_SUM_Add_Error_Function_Test) {
NeuralNetwork network;
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec;
std::vector<double> inp, out;
for (int i = 0; i < 3; i++) {
inp.push_back(i);
out.push_back(i + 4);
}
data_vec.emplace_back(std::make_pair(inp, out));
DataSet dataSet(&data_vec);
ErrorFunction *f = new MSE(&network, &dataSet);
ErrorSum mse_sum;
BOOST_CHECK_NO_THROW(mse_sum.add_error_function(f));
}
BOOST_AUTO_TEST_CASE(ErrorFunction_MSE_SUM_Eval_Test) {
ErrorSum mse_sum;
Neuron *n1 = new NeuronLinear();
Neuron *n2 = new NeuronLinear();
NeuralNetwork network;
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec;
std::vector<double> inp, out;
for (int i = 0; i < 1; i++) {
inp.push_back(i);
out.push_back(i + 4);
}
data_vec.emplace_back(std::make_pair(inp, out));
network.add_neuron(n1);
network.add_neuron(n2);
network.add_connection_simple(0, 1, SIMPLE_CONNECTION_TYPE::UNITARY_WEIGHT, 2.5);
network.randomize_weights();
std::vector<size_t> net_input_neurons_indices(1);
std::vector<size_t> net_output_neurons_indices(1);
net_input_neurons_indices[0] = 0;
net_output_neurons_indices[0] = 1;
network.specify_input_neurons(net_input_neurons_indices);
network.specify_output_neurons(net_output_neurons_indices);
DataSet dataSet(&data_vec);
ErrorFunction *f = new MSE(&network, &dataSet);
mse_sum.add_error_function(f);
std::vector<double> weights;
weights.push_back(1);
BOOST_CHECK_EQUAL(9, mse_sum.eval(&weights));
}
BOOST_AUTO_TEST_CASE(ErrorFunction_MSE_SUM_Get_Dimension_test) {
ErrorSum mse_sum;
BOOST_CHECK_EQUAL(0, mse_sum.get_dimension());
Neuron *n1 = new NeuronLinear();
Neuron *n2 = new NeuronLinear();
NeuralNetwork network;
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec;
std::vector<double> inp, out;
for (int i = 0; i < 1; i++) {
inp.push_back(i);
out.push_back(i + 4);
}
data_vec.emplace_back(std::make_pair(inp, out));
network.add_neuron(n1);
network.add_neuron(n2);
network.add_connection_simple(0, 1, SIMPLE_CONNECTION_TYPE::UNITARY_WEIGHT, 2.5);
network.randomize_weights();
std::vector<size_t> net_input_neurons_indices(1);
std::vector<size_t> net_output_neurons_indices(1);
net_input_neurons_indices[0] = 0;
net_output_neurons_indices[0] = 1;
network.specify_input_neurons(net_input_neurons_indices);
network.specify_output_neurons(net_output_neurons_indices);
DataSet dataSet(&data_vec);
ErrorFunction *f = new MSE(&network, &dataSet);
mse_sum.add_error_function(f);
BOOST_CHECK_EQUAL(2, mse_sum.get_dimension());
}
BOOST_AUTO_TEST_SUITE_END()