Something went wrong on our end
-
David Vojtek authoredDavid Vojtek authored
net_test_harmonic_oscilator.cpp 6.72 KiB
/**
* Example solving the eigenvalue problem:
*
*
*
* @author Michal Kravčenko
* @date 3.9.18 -
*/
#include <random>
#include <iostream>
#include <fstream>
#include "../../include/4neuro.h"
#include "../Solvers/DESolver.h"
void test_harmonic_oscilator_fixed_E(double EE, double accuracy, size_t n_inner_neurons, size_t train_size, double ds, double de, size_t n_test_points, double ts, double te, size_t max_iters, size_t n_particles){
std::cout << "Finding a solution via the Particle Swarm Optimization" << std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
/* SOLVER SETUP */
size_t n_inputs = 1;
size_t n_equations = 1;
l4n::DESolver solver( n_equations, n_inputs, n_inner_neurons );
/* SETUP OF THE EQUATIONS */
l4n::MultiIndex alpha_0( n_inputs );
l4n::MultiIndex alpha_2( n_inputs );
alpha_2.set_partial_derivative(0, 2);
/* the governing differential equation */
char buff[255];
std::sprintf(buff, "%f", -EE);
std::string eigenvalue(buff);
solver.add_to_differential_equation( 0, alpha_2, "-1.0" );
solver.add_to_differential_equation( 0, alpha_0, "x^2" );
solver.add_to_differential_equation( 0, alpha_0, eigenvalue );
/* SETUP OF THE TRAINING DATA */
std::vector<double> inp, out;
double d1_s = ds, d1_e = de, frac;
/* TRAIN DATA FOR THE GOVERNING DE */
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_g;
/* ISOTROPIC TRAIN SET */
frac = (d1_e - d1_s) / (train_size - 1);
for(unsigned int i = 0; i < train_size; ++i){
inp = {frac * i + d1_s};
out = {0.0};
data_vec_g.emplace_back(std::make_pair(inp, out));
}
// inp = {0.0};
// out = {1.0};
// data_vec_g.emplace_back(std::make_pair(inp, out));
l4n::DataSet ds_00(&data_vec_g);
/* Placing the conditions into the solver */
solver.set_error_function( 0, l4n::ErrorFunctionType::ErrorFuncMSE, &ds_00 );
/* PARTICLE SWARM TRAINING METHOD SETUP */
size_t total_dim = (2 + n_inputs) * n_inner_neurons;
std::vector<double> params(total_dim), params_analytical(total_dim);
std::random_device seeder;
std::mt19937 gen(seeder());
std::uniform_real_distribution<double> dist(-10.0, 10.0);
std::vector<double> input(1);
//must encapsulate each of the partial error functions
std::vector<double> domain_bounds(2 * total_dim);
for(unsigned int i = 0; i < total_dim; ++i){
domain_bounds[2 * i] = -10.0;
domain_bounds[2 * i + 1] = 10.0;
}
double c1 = 1.7, c2 = 1.7, w = 0.7;
/* if the maximal velocity from the previous step is less than 'gamma' times the current maximal velocity, then one
* terminating criterion is met */
double gamma = 0.5;
/* if 'delta' times 'n' particles are in the centroid neighborhood given by the radius 'epsilon', then the second
* terminating criterion is met ('n' is the total number of particles) */
double epsilon = 0.02;
double delta = 0.9;
solver.solve_via_particle_swarm( &domain_bounds, c1, c2, w, n_particles, max_iters, gamma, epsilon, delta );
l4n::NeuralNetwork *solution = solver.get_solution( alpha_0 );
std::vector<double> parameters(total_dim);//w1, a1, b1, w2, a2, b2, ... , wm, am, bm
std::vector<double> *weight_params = solution->get_parameter_ptr_weights();
std::vector<double> *biases_params = solution->get_parameter_ptr_biases();
for(size_t i = 0; i < n_inner_neurons; ++i){
parameters[3 * i] = weight_params->at(i);
parameters[3 * i + 1] = weight_params->at(i + n_inner_neurons);
parameters[3 * i + 2] = biases_params->at(i);
printf("Path %3d. w%d = %15.8f, b%d = %15.8f, a%d = %15.8f\n", (int)(i + 1), (int)(i + 1), parameters[3 * i], (int)(i + 1), parameters[3 * i + 2], (int)(i + 1), parameters[3 * i + 1]);
}
/* ISOTROPIC TEST SET FOR BOUNDARY CONDITIONS */
/* first boundary condition & its error */
std::ofstream ofs("data_1d_osc.txt", std::ofstream::out);
printf("Exporting files 'data_1d_osc.txt': %7.3f%%\r", 0.0);
frac = (te - ts) / (n_test_points - 1);
for(size_t i = 0; i < n_test_points; ++i){
double x = frac * i + ts;
inp[0] = x;
solution->eval_single(inp, out);
ofs << i + 1 << " " << x << " " << out[0] << " " << std::endl;
printf("Exporting files 'data_1d_osc.txt': %7.3f%%\r", (100.0 * i) / (n_test_points - 1));
std::cout.flush();
}
printf("Exporting files 'data_1d_osc.txt': %7.3f%%\n", 100.0);
std::cout.flush();
ofs.close();
inp[0] = -1.0;
solution->eval_single(inp, out);
printf("y(-1) = %f\n", out[0]);
inp[0] = 0.0;
solution->eval_single(inp, out);
printf("y( 0) = %f\n", out[0]);
inp[0] = 1.0;
solution->eval_single(inp, out);
printf("y( 1) = %f\n", out[0]);
std::cout << "********************************************************************************************************************************************" <<std::endl;
}
int main() {
std::cout << "Running lib4neuro harmonic Oscilator example 1" << std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
std::cout << " Governing equation: -y''(x) + x^2 * y(x) = E * y(x)" << std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
std::cout << "Expressing solution as y(x) = sum over [a_i / (1 + exp(bi - wxi*x ))], i in [1, n], where n is the number of hidden neurons" <<std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
double EE = -1.0;
unsigned int n_inner_neurons = 2;
unsigned int train_size = 10;
double accuracy = 1e-3;
double ds = -5.0;
double de = 5.0;
unsigned int test_size = 300;
double ts = -6.0;
double te = 6.0;
size_t particle_swarm_max_iters = 1000;
size_t n_particles = 100;
test_harmonic_oscilator_fixed_E(EE, accuracy, n_inner_neurons, train_size, ds, de, test_size, ts, te, particle_swarm_max_iters, n_particles);
// std::string expression_string = "-x";
// std::string expression_string_1 = "1.0";
// ExprtkWrapper f(expression_string);
// ExprtkWrapper f1(expression_string_1);
//
//
// f1.eval();
//
// std::vector<double> inp(1);
//
// inp = {150};
// double result = f.eval(inp);
//
// f1.eval();
// inp = {15};
// result = f.eval(inp);
return 0;
}