Skip to content
Snippets Groups Projects
net_test_3.cpp 4.81 KiB
/**
 * Example testing the correctness of back-propagation implementation
 * */

#include <iostream>
#include <cstdio>
#include <fstream>
#include <vector>
#include <utility>
#include <algorithm>
#include <assert.h>
#include <ctime>

#include <4neuro.h>

#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_int_distribution.hpp>
#include <boost/random/uniform_real_distribution.hpp>


double get_difference(std::vector<double>& a,
                      std::vector<double>& b) {

    double out = 0.0, m;

    for (size_t i = 0; i < a.size(); ++i) {


        m = a[i] - b[i];
        out += m * m;
    }

    return std::sqrt(out);

}


void calculate_gradient_analytical(std::vector<double>& input,
                                   std::vector<double>& parameter_biases,
                                   std::vector<double>& parameter_weights,
                                   size_t n_hidden_neurons,
                                   std::vector<double>& gradient_analytical) {

    double      a, b, y, x = input[0];
    for (size_t i          = 0; i < n_hidden_neurons; ++i) {
        a = parameter_weights[i];
        b = parameter_biases[i];
        y = parameter_weights[n_hidden_neurons + i];

        gradient_analytical[i] += y * x * std::exp(b - a * x) / ((1 + std::exp(b - a * x)) * (1 + std::exp(b - a * x)));
        gradient_analytical[n_hidden_neurons + i] += 1.0 / ((1 + std::exp(b - a * x)));
        gradient_analytical[2 * n_hidden_neurons + i] -=
            y * std::exp(b - a * x) / ((1 + std::exp(b - a * x)) * (1 + std::exp(b - a * x)));
    }

}

int main(int argc,
         char** argv) {

    int n_tests          = 2;
    int n_hidden_neurons = 2;
    try {
        /* Numbers of neurons in layers (including input and output layers) */
        std::vector<unsigned int> neuron_numbers_in_layers(3);
        neuron_numbers_in_layers[0] = neuron_numbers_in_layers[2] = 1;
        neuron_numbers_in_layers[1] = n_hidden_neurons;

        /* Fully connected feed-forward network with linear activation functions for input and output */
        /* layers and the specified activation fns for the hidden ones (each entry = layer)*/
        std::vector<l4n::NEURON_TYPE> hidden_type_v = {l4n::NEURON_TYPE::LOGISTIC, l4n::NEURON_TYPE::LOGISTIC,
                                                       l4n::NEURON_TYPE::LOGISTIC, l4n::NEURON_TYPE::LOGISTIC,
                                                       l4n::NEURON_TYPE::LOGISTIC}; // hidden_type_v = {l4n::NEURON_TYPE::LOGISTIC, l4n::NEURON_TYPE::LINEAR}
        l4n::FullyConnectedFFN        nn1(&neuron_numbers_in_layers,
                                          &hidden_type_v);
        nn1.randomize_parameters();

        boost::random::mt19937                     gen(std::time(0));
        boost::random::uniform_real_distribution<> dist(-1,
                                                        1);

        size_t              n_parameters = nn1.get_n_weights() + nn1.get_n_biases();
        std::vector<double> gradient_backprogation(n_parameters);
        std::vector<double> gradient_analytical(n_parameters);
        std::vector<double>* parameter_biases  = nn1.get_parameter_ptr_biases();
        std::vector<double>* parameter_weights = nn1.get_parameter_ptr_weights();
        std::vector<double> error_derivative = {1};

        size_t n_good = 0, n_bad = 0;

        for (int i = 0; i < n_tests; ++i) {

            std::vector<double> input(1);
            std::vector<double> output(1);

            input[0]  = dist(gen);
            output[0] = 0;


            std::fill(gradient_backprogation.begin(),
                      gradient_backprogation.end(),
                      0);
            std::fill(gradient_analytical.begin(),
                      gradient_analytical.end(),
                      0);

            nn1.eval_single(input,
                            output);

            calculate_gradient_analytical(input,
                                          *parameter_biases,
                                          *parameter_weights,
                                          n_hidden_neurons,
                                          gradient_analytical);
            nn1.add_to_gradient_single(input,
                                       error_derivative,
                                       1,
                                       gradient_backprogation);

            double diff = get_difference(gradient_backprogation,
                                         gradient_analytical);

            if (diff < 1e-6) {
                n_good++;
            } else {
                n_bad++;
            }
        }

        std::cout << "Good gradients: " << n_good << ", Bad gradients: " << n_bad << std::endl;


        return 0;

    }
    catch (const std::exception& e) {
        std::cerr << e.what() << std::endl;
        exit(EXIT_FAILURE);
    }
}