Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
lib4neuro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Container Registry
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
MolDyn
lib4neuro
Commits
03d4e990
Commit
03d4e990
authored
6 years ago
by
Martin Beseda
Browse files
Options
Downloads
Patches
Plain Diff
DEL: Deleted .orig files
parent
8e84c0b5
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/DataSet/DataSet.cpp.orig
+0
-205
0 additions, 205 deletions
src/DataSet/DataSet.cpp.orig
src/DataSet/DataSet.h.orig
+0
-177
0 additions, 177 deletions
src/DataSet/DataSet.h.orig
with
0 additions
and
382 deletions
src/DataSet/DataSet.cpp.orig
deleted
100644 → 0
+
0
−
205
View file @
8e84c0b5
//
// Created by martin on 7/13/18.
//
#include "DataSetSerialization.h"
namespace lib4neuro {
DataSet::DataSet(std::string file_path) {
std::ifstream ifs(file_path);
boost::archive::text_iarchive ia(ifs);
ia >> *this;
ifs.close();
}
<<<<<<< HEAD
=======
DataSet::DataSet() {
}
>>>>>>> 5fd0f3dcf535edfc3e3f4dd7b4cb256f2e95e8fe
DataSet::DataSet(std::vector<std::pair<std::vector<double>, std::vector<double>>> *data_ptr) {
this->n_elements = data_ptr->size();
this->data = *data_ptr;
this->input_dim = this->data[0].first.size();
this->output_dim = this->data[0].second.size();
//TODO check the complete data set for input/output dimensions
}
DataSet::DataSet(double lower_bound, double upper_bound, unsigned int size, double output) {
std::vector<std::pair<std::vector<double>, std::vector<double>>> new_data_vec;
this->data = new_data_vec;
this->n_elements = 0;
this->input_dim = 1;
this->output_dim = 1;
this->add_isotropic_data(lower_bound, upper_bound, size, output);
}
DataSet::DataSet(std::vector<double> &bounds, unsigned int no_elems_in_one_dim,
std::vector<double> (*output_func)(std::vector<double> &), unsigned int output_dim) {
std::vector<std::pair<std::vector<double>, std::vector<double>>> new_data_vec;
this->data = new_data_vec;
this->input_dim = bounds.size() / 2;
this->output_dim = output_dim;
this->n_elements = 0;
this->add_isotropic_data(bounds, no_elems_in_one_dim, output_func);
}
void DataSet::add_data_pair(std::vector<double> &inputs, std::vector<double> &outputs) {
if (inputs.size() != this->input_dim) {
throw InvalidDimension("Bad input dimension.");
} else if (outputs.size() != this->output_dim) {
throw InvalidDimension("Bad output dimension.");
}
this->n_elements++;
this->data.emplace_back(std::make_pair(inputs, outputs));
}
void DataSet::add_isotropic_data(double lower_bound, double upper_bound, unsigned int size, double output) {
if (this->input_dim != 1 || this->output_dim != 1) {
throw InvalidDimension("Cannot add data with dimensionality 1:1 when the data set "
"is of different dimensionality!");
}
double frac = (upper_bound - lower_bound) / (size - 1);
std::vector<double> inp, out;
out = {output};
for (unsigned int i = 0; i < size; ++i) {
inp = {frac * i};
this->data.emplace_back(std::make_pair(inp, out));
}
this->n_elements += size;
}
void DataSet::add_isotropic_data(std::vector<double> &bounds, unsigned int no_elems_in_one_dim,
std::vector<double> (*output_func)(std::vector<double> &)) {
// TODO add check of dataset dimensions
std::vector<std::vector<double>> grid;
std::vector<double> tmp;
double frac;
for (unsigned int i = 0; i < bounds.size(); i += 2) {
frac = (bounds[i] + bounds[i + 1]) / (no_elems_in_one_dim - 1);
tmp.clear();
for (double j = bounds[i]; j <= bounds[i + 1]; j += frac) {
tmp.emplace_back(j);
}
grid.emplace_back(tmp);
}
grid = this->cartesian_product(&grid);
for (auto vec : grid) {
this->n_elements++;
this->data.emplace_back(std::make_pair(vec, output_func(vec)));
}
}
std::vector<std::pair<std::vector<double>, std::vector<double>>> *DataSet::get_data() {
return &(this->data);
}
size_t DataSet::get_n_elements() {
return this->n_elements;
}
size_t DataSet::get_input_dim() {
return this->input_dim;
}
size_t DataSet::get_output_dim() {
return this->output_dim;
}
<<<<<<< HEAD
void DataSet::print_data() {
if (n_elements) {
for (auto p : this->data) {
/* INPUT */
for (auto v : std::get<0>(p)) {
std::cout << v << " ";
}
std::cout << "-> ";
/* OUTPUT */
for (auto v : std::get<1>(p)) {
std::cout << v << " ";
}
=======
void DataSet::print_data() {
if (n_elements) {
for (auto p : this->data) {
/* INPUT */
for (auto v : std::get<0>(p)) {
std::cout << v << " ";
}
std::cout << "-> ";
/* OUTPUT */
for (auto v : std::get<1>(p)) {
std::cout << v << " ";
}
>>>>>>> 5fd0f3dcf535edfc3e3f4dd7b4cb256f2e95e8fe
std::cout << std::endl;
}
}
}
void DataSet::store_text(std::string &file_path) {
//TODO check if stream was successfully opened
std::ofstream ofs(file_path);
boost::archive::text_oarchive oa(ofs);
oa << *this;
ofs.close();
}
template<class T>
std::vector<std::vector<T>> DataSet::cartesian_product(const std::vector<std::vector<T>> *v) {
std::vector<std::vector<double>> v_combined_old, v_combined, v_tmp;
std::vector<double> tmp;
for (const auto &e : v->at(0)) {
tmp = {e};
v_combined.emplace_back(tmp);
}
for (unsigned int i = 1; i < v->size(); i++) { // Iterate through remaining vectors of 'v'
v_combined_old = v_combined;
v_combined.clear();
for (const auto &e : v->at(i)) {
for (const auto &vec : v_combined_old) {
tmp = vec;
tmp.emplace_back(e);
/* Add only unique elements */
if (std::find(v_combined.begin(), v_combined.end(), tmp) == v_combined.end()) {
v_combined.emplace_back(tmp);
}
}
}
}
return v_combined;
}
}
\ No newline at end of file
This diff is collapsed.
Click to expand it.
src/DataSet/DataSet.h.orig
deleted
100644 → 0
+
0
−
177
View file @
8e84c0b5
//
// Created by martin on 7/13/18.
//
#ifndef INC_4NEURO_DATASET_H
#define INC_4NEURO_DATASET_H
#include <iostream>
#include <fstream>
#include <utility>
#include <vector>
#include <string>
#include <functional>
#include "../settings.h"
#include "../Exception/Exceptions.h"
namespace lib4neuro {
/**
* Class representing data, which can be used for training
* and testing purposes.
*/
class DataSet {
private:
/**
* Number of elements in the data set
*/
size_t n_elements;
/**
* Dimension of the input
*/
size_t input_dim = 0;
/**
* Dimension of the output
*/
size_t output_dim = 0;
/**
* Stored data in the format of pairs of corresponding
* input and output vectors
*/
std::vector<std::pair<std::vector<double>, std::vector<double>>> data;
template<class T>
std::vector<std::vector<T>> cartesian_product(const std::vector<std::vector<T>> *v);
public:
/**
* Struct used to access private properties from
* the serialization function
*/
struct access;
/**
* Constructor reading data from the file
* @param file_path Path to the file with stored data set
*/
LIB4NEURO_API DataSet(std::string file_path);
<<<<<<< HEAD
=======
LIB4NEURO_API DataSet();
>>>>>>> 5fd0f3dcf535edfc3e3f4dd7b4cb256f2e95e8fe
/**
* Constructor accepting data vector
* @param data_ptr Pointer to the vector containing data
*/
LIB4NEURO_API DataSet(std::vector<std::pair<std::vector<double>, std::vector<double>>> *data_ptr);
/**
* Creates a new data set with input values equidistantly positioned
* over the certain interval and the output value
* being constant
*
* Both input and output are 1-dimensional
*
* @todo add bounds as vectors for multi-dimensional data-sets
*
* @param lower_bound Lower bound of the input data interval
* @param upper_bound Upper bound of the input data interval
* @param size Number of input-output pairs generated
* @param output Constant output value
*/
LIB4NEURO_API DataSet(double lower_bound, double upper_bound, unsigned int size, double output);
/**
*
* @param bounds
* @param no_elems_in_one_dim
* @param output_func
* @param output_dim
*/
LIB4NEURO_API DataSet(std::vector<double> &bounds, unsigned int no_elems_in_one_dim,
std::vector<double> (*output_func)(std::vector<double> &), unsigned int output_dim);
/**
* Getter for number of elements
* @return Number of elements in the data set
*/
LIB4NEURO_API size_t get_n_elements();
/**
* Returns the input dimension
* @return Input dimension
*/
LIB4NEURO_API size_t get_input_dim();
/**
* Return the output dimension
* @return Output dimension
*/
LIB4NEURO_API size_t get_output_dim();
/**
* Getter for the data structure
* @return Vector of data
*/
LIB4NEURO_API std::vector<std::pair<std::vector<double>, std::vector<double>>> *get_data();
/**
* Adds a new pair of data to the data set
* @param inputs Vector of input data
* @param outputs Vector of output data corresponding to the input data
*/
LIB4NEURO_API void add_data_pair(std::vector<double> &inputs, std::vector<double> &outputs);
//TODO expand method to generate multiple data types - chebyshev etc.
/**
* Adds a new data with input values equidistantly positioned
* over the certain interval and the output value
* being constant
*
* Both input and output are 1-dimensional
*
* @param lower_bound Lower bound of the input data interval
* @param upper_bound Upper bound of the input data interval
* @param size Number of input-output pairs generated
* @param output Constant output value
*/
LIB4NEURO_API void add_isotropic_data(double lower_bound, double upper_bound, unsigned int size, double output);
/**
* Adds a new data with input values equidistantly positioned
* over the certain interval and the output value
* being constant
*
* Input can have arbitrary many dimensions,
* output can be an arbitrary function
*
* @param bounds Odd values are lower bounds and even values are corresponding upper bounds
* @param size Number of input-output pairs generated
* @param output_func Function determining output value
*/
LIB4NEURO_API void add_isotropic_data(std::vector<double> &bounds, unsigned int no_elems_in_one_dim,
std::vector<double> (*output_func)(std::vector<double> &));
//TODO Chebyshev - ch. interpolation points, i-th point = cos(i*alpha) from 0 to pi
/**
* Prints the data set
*/
LIB4NEURO_API void print_data();
/**
* Stores the DataSet object to the binary file
*/
LIB4NEURO_API void store_text(std::string &file_path);
};
}
#endif //INC_4NEURO_DATASET_H
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment