Skip to content
Snippets Groups Projects
Commit 294411c2 authored by Michal Kravcenko's avatar Michal Kravcenko
Browse files

FIX: minor issues

parent d0a01e41
No related branches found
No related tags found
No related merge requests found
Subproject commit 0792dde1c543aba10d66d634f923e6993f9699d3
Subproject commit 03d255a85568f504c301a66b58edad30ae3f211d
......@@ -106,6 +106,7 @@ void GradientDescent::optimize( ErrorFunction &ef ) {
for(i = 0; i < gradient_current->size(); ++i){
(*params_prev)[i] = (*params_current)[i] - gamma * (*gradient_current)[i];
// (*params_prev)[i] *= 0.95;
}
/* switcheroo */
......
......@@ -241,8 +241,8 @@ void test_pde(double accuracy, size_t n_inner_neurons, size_t train_size, double
solver_01.set_error_function( 1, ErrorFunctionType::ErrorFuncMSE, &ds_t );
solver_01.set_error_function( 2, ErrorFunctionType::ErrorFuncMSE, &ds_x );
optimize_via_particle_swarm( solver_01, alpha_00, max_iters, n_particles );
export_solution( n_test_points, te, ts, solver_01 , alpha_00, alpha_01, alpha_20, "particle_" );
// optimize_via_particle_swarm( solver_01, alpha_00, max_iters, n_particles );
// export_solution( n_test_points, te, ts, solver_01 , alpha_00, alpha_01, alpha_20, "particle_" );
optimize_via_gradient_descent( solver_01, accuracy );
......@@ -261,9 +261,9 @@ int main() {
std::cout << "Expressing solution as y(x, t) = sum over [a_i / (1 + exp(bi - wxi*x - wti*t))], i in [1, n], where n is the number of hidden neurons" <<std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
unsigned int n_inner_neurons = 4;
unsigned int train_size = 50;
double accuracy = 1e-3;
unsigned int n_inner_neurons = 6;
unsigned int train_size = 20;
double accuracy = 1e-2;
double ds = 0.0;
double de = 1.0;
......@@ -271,8 +271,8 @@ int main() {
double ts = ds;
double te = de + 0;
size_t particle_swarm_max_iters = 1000;
size_t n_particles = 50;
size_t particle_swarm_max_iters = 100;
size_t n_particles = 10;
test_pde(accuracy, n_inner_neurons, train_size, ds, de, test_size, ts, te, particle_swarm_max_iters, n_particles);
return 0;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment