Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
lib4neuro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Container Registry
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
MolDyn
lib4neuro
Commits
45bb931c
Commit
45bb931c
authored
5 years ago
by
Martin Beseda
Browse files
Options
Downloads
Patches
Plain Diff
[WIP] Looking for an optimal set of symmetry functions.
parent
ec1b5267
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/Network/ACSFNeuralNetwork.cpp
+0
-1
0 additions, 1 deletion
src/Network/ACSFNeuralNetwork.cpp
src/examples/dev_sandbox.cpp
+72
-51
72 additions, 51 deletions
src/examples/dev_sandbox.cpp
with
72 additions
and
52 deletions
src/Network/ACSFNeuralNetwork.cpp
+
0
−
1
View file @
45bb931c
...
...
@@ -20,7 +20,6 @@ lib4neuro::ACSFNeuralNetwork::ACSFNeuralNetwork(std::unordered_map<ELEMENT_SYMBO
size_t
last_neuron_bias_idx
=
0
;
size_t
last_connection_weight_idx
=
0
;
std
::
shared_ptr
<
Neuron
>
output_neuron
=
std
::
make_shared
<
NeuronLinear
>
();
size_t
last_neuron_idx
=
this
->
add_neuron
(
output_neuron
,
BIAS_TYPE
::
NO_BIAS
);
std
::
vector
<
size_t
>
outputs
=
{
last_neuron_idx
};
...
...
This diff is collapsed.
Click to expand it.
src/examples/dev_sandbox.cpp
+
72
−
51
View file @
45bb931c
//
// Created by martin on 20.08.19.
//
#include
<exception>
#include
<4neuro.h>
...
...
@@ -103,45 +106,29 @@ double optimize_via_LBMQ(l4n::NeuralNetwork& net,
return
err
;
}
void
print_into_file
(
const
char
*
fn
,
std
::
shared_ptr
<
l4n
::
DataSet
>
&
ds
,
l4n
::
NeuralNetwork
&
net
){
std
::
ofstream
outfile
;
outfile
.
open
(
fn
,
std
::
ios
::
out
);
std
::
vector
<
double
>
output
;
output
.
resize
(
1
);
for
(
auto
e
:
*
ds
->
get_data
())
{
for
(
auto
inp_e
:
e
.
first
)
{
outfile
<<
inp_e
<<
" "
;
}
outfile
<<
e
.
second
.
at
(
0
)
<<
" "
;
net
.
eval_single
(
e
.
first
,
output
);
outfile
<<
output
.
at
(
0
)
<<
std
::
endl
;
}
outfile
.
close
();
}
int
main
()
{
try
{
/* Specify cutoff functions */
l4n
::
CutoffFunction1
cutoff1
(
10.1
);
l4n
::
CutoffFunction2
cutoff2
(
12.5
);
l4n
::
CutoffFunction2
cutoff3
(
15.2
);
l4n
::
CutoffFunction2
cutoff4
(
10.3
);
l4n
::
CutoffFunction2
cutoff5
(
12.9
);
// l4n::CutoffFunction1 cutoff1(10.1);
l4n
::
CutoffFunction2
cutoff1
(
8
);
// l4n::CutoffFunction2 cutoff2(15.2);
// l4n::CutoffFunction2 cutoff4(10.3);
// l4n::CutoffFunction2 cutoff5(12.9);
// l4n::CutoffFunction2 cutoff6(11);
/* Specify symmetry functions */
l4n
::
G1
sym_f1
(
&
cutoff1
);
l4n
::
G2
sym_f2
(
&
cutoff2
,
0.15
,
0.75
);
l4n
::
G2
sym_f3
(
&
cutoff3
,
0.1
,
0.2
);
l4n
::
G3
sym_f4
(
&
cutoff4
,
0.3
);
l4n
::
G4
sym_f5
(
&
cutoff5
,
0.05
,
true
,
0.05
);
l4n
::
G4
sym_f6
(
&
cutoff5
,
0.05
,
false
,
0.05
);
l4n
::
G2
sym_f2
(
&
cutoff1
,
15
,
8
);
l4n
::
G2
sym_f3
(
&
cutoff1
,
10
,
4
);
// l4n::G3 sym_f4(&cutoff4, 0.3);
// l4n::G4 sym_f5(&cutoff5, 0.05, true, 0.05);
// l4n::G4 sym_f6(&cutoff5, 0.05, false, 0.05);
// l4n::G4 sym_f7(&cutoff6, 0.5, true, 0.05);
// l4n::G4 sym_f8(&cutoff6, 0.5, false, 0.05);
std
::
vector
<
l4n
::
SymmetryFunction
*>
helium_sym_funcs
=
{
&
sym_f1
,
&
sym_f2
,
&
sym_f3
,
&
sym_f4
,
&
sym_f5
,
&
sym_f6
};
std
::
vector
<
l4n
::
SymmetryFunction
*>
helium_sym_funcs
=
{
&
sym_f1
,
&
sym_f2
,
&
sym_f3
};
//
, &sym_f4, &sym_f5, &sym_f6
, &sym_f7, &sym_f8
};
l4n
::
Element
helium
=
l4n
::
Element
(
"He"
,
helium_sym_funcs
);
...
...
@@ -149,7 +136,7 @@ int main() {
elements
[
l4n
::
ELEMENT_SYMBOL
::
He
]
=
&
helium
;
/* Read data */
l4n
::
XYZReader
reader
(
"
../../data
/HE21+T
4
.xyz"
);
l4n
::
XYZReader
reader
(
"
/home/martin/Desktop
/HE21+T
2
.xyz"
);
reader
.
read
();
std
::
cout
<<
"Finished reading data"
<<
std
::
endl
;
...
...
@@ -158,39 +145,73 @@ int main() {
/* Create a neural network */
std
::
unordered_map
<
l4n
::
ELEMENT_SYMBOL
,
std
::
vector
<
unsigned
int
>>
n_hidden_neurons
;
n_hidden_neurons
[
l4n
::
ELEMENT_SYMBOL
::
He
]
=
{
1
0
};
n_hidden_neurons
[
l4n
::
ELEMENT_SYMBOL
::
He
]
=
{
2
,
1
};
std
::
unordered_map
<
l4n
::
ELEMENT_SYMBOL
,
std
::
vector
<
l4n
::
NEURON_TYPE
>>
type_hidden_neurons
;
type_hidden_neurons
[
l4n
::
ELEMENT_SYMBOL
::
He
]
=
{
l4n
::
NEURON_TYPE
::
LOGISTIC
};
type_hidden_neurons
[
l4n
::
ELEMENT_SYMBOL
::
He
]
=
{
l4n
::
NEURON_TYPE
::
LOGISTIC
,
l4n
::
NEURON_TYPE
::
LINEAR
};
l4n
::
ACSFNeuralNetwork
net
(
elements
,
*
reader
.
get_element_list
(),
reader
.
contains_charge
(),
n_hidden_neurons
,
type_hidden_neurons
);
// l4n::NeuralNetwork net;
// std::vector<std::shared_ptr<l4n::NeuronLinear>> inps;
// std::vector<size_t> inps_inds;
// for(unsigned int i = 0; i < 126; i++) {
// std::shared_ptr<l4n::NeuronLinear> inp = std::make_shared<l4n::NeuronLinear>();
// inps.emplace_back(inp);
// inps_inds.emplace_back(net.add_neuron(inp, l4n::BIAS_TYPE::NO_BIAS));
// }
//
// net.specify_input_neurons(inps_inds);
//
// std::vector<std::shared_ptr<l4n::NeuronLogistic>> hids;
//
// std::vector<unsigned int> hids_idxs;
// size_t idx;
// unsigned int n_hidden = 5;
// for(unsigned int i = 0; i < n_hidden; i++) {
// std::shared_ptr<l4n::NeuronLogistic> hid = std::make_shared<l4n::NeuronLogistic>();
// hids.emplace_back(hid);
// idx = net.add_neuron(hid, l4n::BIAS_TYPE::NEXT_BIAS);
// hids_idxs.emplace_back(idx);
//
// for(unsigned int j = 0; j < 126; j++) {
// net.add_connection_simple(j, idx);
// }
// }
//
// std::shared_ptr<l4n::NeuronLinear> out = std::make_shared<l4n::NeuronLinear>();
// idx = net.add_neuron(out, l4n::BIAS_TYPE::NO_BIAS);
// std::vector<size_t> out_inds = {idx};
// for(unsigned int i = 0; i < n_hidden; i++) {
// net.add_connection_simple(hids_idxs.at(i), idx);
// }
// net.specify_output_neurons(out_inds);
l4n
::
MSE
mse
(
&
net
,
ds
.
get
());
net
.
randomize_parameters
();
// optimize_via_particle_swarm(net, mse);
//
double err1 = optimize_via_LBMQ(net, mse);
double
err1
=
optimize_via_LBMQ
(
net
,
mse
);
double
err2
=
optimize_via_gradient_descent
(
net
,
mse
);
print_into_file
(
"test_results_2k_BB.txt"
,
ds
,
net
);
/* Print fit comparison with real data */
// std::vector<double> output;
// output.resize(1);
// for(auto e : *ds->get_data()) {
// for(auto inp_e : e.first) {
// std::cout << inp_e << " ";
// }
// std::cout << e.second.at(0) << " ";
// net.eval_single(e.first, output);
// std::cout << output.at(0) << std::endl;
// }
if
(
err2
>
0.00001
)
{
if
(
err2
>
0.00001
)
{
throw
std
::
runtime_error
(
"Training was incorrect!"
);
}
/* Print fit comparison with real data */
std
::
vector
<
double
>
output
;
output
.
resize
(
1
);
for
(
auto
e
:
*
ds
->
get_data
())
{
for
(
unsigned
int
i
=
0
;
i
<
e
.
first
.
size
();
i
++
)
{
std
::
cout
<<
e
.
first
.
at
(
i
)
<<
" "
;
if
(
i
%
3
==
2
)
{
std
::
cout
<<
std
::
endl
;
}
}
std
::
cout
<<
e
.
second
.
at
(
0
)
<<
" "
;
net
.
eval_single
(
e
.
first
,
output
);
std
::
cout
<<
output
.
at
(
0
)
<<
std
::
endl
;
}
}
catch
(
const
std
::
exception
&
e
)
{
std
::
cerr
<<
e
.
what
()
<<
std
::
endl
;
...
...
@@ -198,4 +219,4 @@ int main() {
}
return
0
;
}
\ No newline at end of file
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment