Skip to content
Snippets Groups Projects
Commit 6d896ab3 authored by Martin Beseda's avatar Martin Beseda
Browse files

WIP: Fixed memory leaks...

parent 595b62ca
No related branches found
No related tags found
No related merge requests found
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
namespace lib4neuro { namespace lib4neuro {
NeuralNetwork::NeuralNetwork() { NeuralNetwork::NeuralNetwork() {
this->neurons = new ::std::vector<Neuron *>(0); // this->neurons = new ::std::vector<Neuron *>(0);
// this->neuron_biases = new ::std::vector<double>(0); // this->neuron_biases = new ::std::vector<double>(0);
// this->neuron_bias_indices = new ::std::vector<int>(0); // this->neuron_bias_indices = new ::std::vector<int>(0);
...@@ -56,14 +56,14 @@ namespace lib4neuro { ...@@ -56,14 +56,14 @@ namespace lib4neuro {
NeuralNetwork::~NeuralNetwork() { NeuralNetwork::~NeuralNetwork() {
if (this->neurons) { // if (this->neurons) {
for (auto n: *(this->neurons)) { // for (auto n: *(this->neurons)) {
delete n; // delete n;
n = nullptr; // n = nullptr;
} // }
delete this->neurons; // delete this->neurons;
this->neurons = nullptr; // this->neurons = nullptr;
} // }
// if (this->neuron_potentials) { // if (this->neuron_potentials) {
// delete this->neuron_potentials; // delete this->neuron_potentials;
...@@ -171,7 +171,7 @@ namespace lib4neuro { ...@@ -171,7 +171,7 @@ namespace lib4neuro {
// TODO rework due to the changed structure of the class // TODO rework due to the changed structure of the class
// Neuron * active_neuron, * target_neuron; // Neuron * active_neuron, * target_neuron;
// //
// size_t n = this->neurons->size(); // size_t n = this->neurons.size();
// bool *part_of_subnetwork = new bool[n]; // bool *part_of_subnetwork = new bool[n];
// ::std::fill(part_of_subnetwork, part_of_subnetwork + n, false); // ::std::fill(part_of_subnetwork, part_of_subnetwork + n, false);
// //
...@@ -218,7 +218,7 @@ namespace lib4neuro { ...@@ -218,7 +218,7 @@ namespace lib4neuro {
// //
// is_reachable_from_source[ idx ] = true; // is_reachable_from_source[ idx ] = true;
// //
// active_neuron = this->neurons->at( idx ); // active_neuron = this->neurons.at( idx );
// //
// for(Connection* connection: *(active_neuron->get_connections_out())){ // for(Connection* connection: *(active_neuron->get_connections_out())){
// //
...@@ -267,7 +267,7 @@ namespace lib4neuro { ...@@ -267,7 +267,7 @@ namespace lib4neuro {
// //
// is_reachable_from_destination[ idx ] = true; // is_reachable_from_destination[ idx ] = true;
// //
// active_neuron = this->neurons->at( idx ); // active_neuron = this->neurons.at( idx );
// //
// if(is_reachable_from_source[ idx ]){ // if(is_reachable_from_source[ idx ]){
// n_new_neurons++; // n_new_neurons++;
...@@ -332,11 +332,11 @@ namespace lib4neuro { ...@@ -332,11 +332,11 @@ namespace lib4neuro {
// neuron_local_mapping[i] = (int)idx; // neuron_local_mapping[i] = (int)idx;
// idx++; // idx++;
// //
// Neuron *new_neuron = this->neurons->at(i)->get_copy( ); // Neuron *new_neuron = this->neurons.at(i)->get_copy( );
// //
// output_net->add_neuron( new_neuron ); // output_net->add_neuron( new_neuron );
// local_local_n_arr.push_back( new_neuron ); // local_local_n_arr.push_back( new_neuron );
// local_n_arr.push_back( this->neurons->at(i) ); // local_n_arr.push_back( this->neurons.at(i) );
// } // }
// } // }
// for(size_t in: input_neuron_indices){ // for(size_t in: input_neuron_indices){
...@@ -401,13 +401,13 @@ namespace lib4neuro { ...@@ -401,13 +401,13 @@ namespace lib4neuro {
this->neuron_bias_indices.push_back((int) bias_idx); this->neuron_bias_indices.push_back((int) bias_idx);
} }
this->outward_adjacency.push_back(new ::std::vector<std::pair<size_t, size_t>>(0)); this->outward_adjacency.push_back(std::make_shared<std::vector<std::pair<size_t, size_t>>>(::std::vector<std::pair<size_t, size_t>>(0)));
this->inward_adjacency.push_back(new ::std::vector<std::pair<size_t, size_t>>(0)); this->inward_adjacency.push_back(std::make_shared<std::vector<std::pair<size_t, size_t>>>(::std::vector<std::pair<size_t, size_t>>(0)));
this->neurons->push_back(n); this->neurons.push_back(n);
this->layers_analyzed = false; this->layers_analyzed = false;
return this->neurons->size() - 1; return this->neurons.size() - 1;
} }
void NeuralNetwork::eval_single_debug(::std::vector<double> &input, ::std::vector<double> &output, void NeuralNetwork::eval_single_debug(::std::vector<double> &input, ::std::vector<double> &output,
...@@ -454,7 +454,7 @@ namespace lib4neuro { ...@@ -454,7 +454,7 @@ namespace lib4neuro {
if (bias_idx >= 0) { if (bias_idx >= 0) {
bias = this->neuron_biases.at(bias_idx); bias = this->neuron_biases.at(bias_idx);
} }
potential = this->neurons->at(si)->activate(this->neuron_potentials.at(si), bias); potential = this->neurons.at(si)->activate(this->neuron_potentials.at(si), bias);
std::cout << " applying bias: " << bias << " to neuron potential: " << this->neuron_potentials.at(si) << " -> " << potential << std::endl; std::cout << " applying bias: " << bias << " to neuron potential: " << this->neuron_potentials.at(si) << " -> " << potential << std::endl;
for (auto c: *this->outward_adjacency.at(si)) { for (auto c: *this->outward_adjacency.at(si)) {
...@@ -476,7 +476,7 @@ namespace lib4neuro { ...@@ -476,7 +476,7 @@ namespace lib4neuro {
if (bias_idx >= 0) { if (bias_idx >= 0) {
bias = this->neuron_biases.at(bias_idx); bias = this->neuron_biases.at(bias_idx);
} }
output[i] = this->neurons->at(oi)->activate(this->neuron_potentials.at(oi), bias); output[i] = this->neurons.at(oi)->activate(this->neuron_potentials.at(oi), bias);
std::cout << "setting the output[" << i << "] = " << output[i] << "(bias = " << bias << ")" << std::endl; std::cout << "setting the output[" << i << "] = " << output[i] << "(bias = " << bias << ")" << std::endl;
++i; ++i;
} }
...@@ -615,7 +615,7 @@ namespace lib4neuro { ...@@ -615,7 +615,7 @@ namespace lib4neuro {
if (bias_idx >= 0) { if (bias_idx >= 0) {
bias = this->neuron_biases.at(bias_idx); bias = this->neuron_biases.at(bias_idx);
} }
potential = this->neurons->at(si)->activate(this->neuron_potentials.at(si), bias); potential = this->neurons.at(si)->activate(this->neuron_potentials.at(si), bias);
for (auto c: *this->outward_adjacency.at(si)) { for (auto c: *this->outward_adjacency.at(si)) {
size_t ti = c.first; size_t ti = c.first;
...@@ -634,7 +634,7 @@ namespace lib4neuro { ...@@ -634,7 +634,7 @@ namespace lib4neuro {
if (bias_idx >= 0) { if (bias_idx >= 0) {
bias = this->neuron_biases.at(bias_idx); bias = this->neuron_biases.at(bias_idx);
} }
output[i] = this->neurons->at(oi)->activate(this->neuron_potentials.at(oi), bias); output[i] = this->neurons.at(oi)->activate(this->neuron_potentials.at(oi), bias);
++i; ++i;
} }
} }
...@@ -653,8 +653,7 @@ namespace lib4neuro { ...@@ -653,8 +653,7 @@ namespace lib4neuro {
NeuronDifferentiable *active_neuron; NeuronDifferentiable *active_neuron;
/* initial error propagation */ /* initial error propagation */
::std::vector<size_t> *current_layer = this->neuron_layers_feedforward.at( std::shared_ptr<::std::vector<size_t>> current_layer = this->neuron_layers_feedforward.at(this->neuron_layers_feedforward.size() - 1);
this->neuron_layers_feedforward.size() - 1);
//TODO might not work in the future as the output neurons could be permuted //TODO might not work in the future as the output neurons could be permuted
for (size_t i = 0; i < current_layer->size(); ++i) { for (size_t i = 0; i < current_layer->size(); ++i) {
neuron_idx = current_layer->at(i); neuron_idx = current_layer->at(i);
...@@ -669,7 +668,7 @@ namespace lib4neuro { ...@@ -669,7 +668,7 @@ namespace lib4neuro {
for (size_t i = 0; i < current_layer->size(); ++i) { for (size_t i = 0; i < current_layer->size(); ++i) {
neuron_idx = current_layer->at(i); neuron_idx = current_layer->at(i);
active_neuron = dynamic_cast<NeuronDifferentiable *> (this->neurons->at(neuron_idx)); active_neuron = dynamic_cast<NeuronDifferentiable *> (this->neurons.at(neuron_idx));
if (active_neuron) { if (active_neuron) {
bias_idx = this->neuron_bias_indices.at(neuron_idx); bias_idx = this->neuron_bias_indices.at(neuron_idx);
...@@ -690,7 +689,7 @@ namespace lib4neuro { ...@@ -690,7 +689,7 @@ namespace lib4neuro {
size_t ti = c.first; size_t ti = c.first;
size_t ci = c.second; size_t ci = c.second;
neuron_potential_t = this->neurons->at(ti)->get_last_activation_value( ); neuron_potential_t = this->neurons.at(ti)->get_last_activation_value( );
connection_weight = this->connection_list.at(ci)->eval(this->connection_weights); connection_weight = this->connection_list.at(ci)->eval(this->connection_weights);
this->connection_list.at(ci)->eval_partial_derivative(*this->get_parameter_ptr_weights(), this->connection_list.at(ci)->eval_partial_derivative(*this->get_parameter_ptr_weights(),
...@@ -722,7 +721,7 @@ namespace lib4neuro { ...@@ -722,7 +721,7 @@ namespace lib4neuro {
NeuronDifferentiable *active_neuron; NeuronDifferentiable *active_neuron;
/* initial error propagation */ /* initial error propagation */
::std::vector<size_t> *current_layer = this->neuron_layers_feedforward.at( std::shared_ptr<::std::vector<size_t>> current_layer = this->neuron_layers_feedforward.at(
this->neuron_layers_feedforward.size() - 1); this->neuron_layers_feedforward.size() - 1);
//TODO might not work in the future as the output neurons could be permuted //TODO might not work in the future as the output neurons could be permuted
std::cout << "Error scaling on the output layer: "; std::cout << "Error scaling on the output layer: ";
...@@ -742,7 +741,7 @@ namespace lib4neuro { ...@@ -742,7 +741,7 @@ namespace lib4neuro {
for (size_t i = 0; i < current_layer->size(); ++i) { for (size_t i = 0; i < current_layer->size(); ++i) {
neuron_idx = current_layer->at(i); neuron_idx = current_layer->at(i);
active_neuron = dynamic_cast<NeuronDifferentiable *> (this->neurons->at(neuron_idx)); active_neuron = dynamic_cast<NeuronDifferentiable *> (this->neurons.at(neuron_idx));
if (active_neuron) { if (active_neuron) {
std::cout << " [backpropagation] active neuron: " << neuron_idx << std::endl; std::cout << " [backpropagation] active neuron: " << neuron_idx << std::endl;
...@@ -767,7 +766,7 @@ namespace lib4neuro { ...@@ -767,7 +766,7 @@ namespace lib4neuro {
size_t ti = c.first; size_t ti = c.first;
size_t ci = c.second; size_t ci = c.second;
neuron_activation_t = this->neurons->at(ti)->get_last_activation_value( ); neuron_activation_t = this->neurons.at(ti)->get_last_activation_value( );
connection_weight = this->connection_list.at(ci)->eval(this->connection_weights); connection_weight = this->connection_list.at(ci)->eval(this->connection_weights);
std::cout << " [backpropagation] value ("<<ti<< "): " << neuron_activation_t << ", scaling: " << scaling_backprog[neuron_idx] << std::endl; std::cout << " [backpropagation] value ("<<ti<< "): " << neuron_activation_t << ", scaling: " << scaling_backprog[neuron_idx] << std::endl;
...@@ -857,7 +856,7 @@ namespace lib4neuro { ...@@ -857,7 +856,7 @@ namespace lib4neuro {
} }
size_t NeuralNetwork::get_n_neurons() { size_t NeuralNetwork::get_n_neurons() {
return this->neurons->size(); return this->neurons.size();
} }
void NeuralNetwork::specify_input_neurons(std::vector<size_t> &input_neurons_indices) { void NeuralNetwork::specify_input_neurons(std::vector<size_t> &input_neurons_indices) {
...@@ -960,7 +959,7 @@ namespace lib4neuro { ...@@ -960,7 +959,7 @@ namespace lib4neuro {
void NeuralNetwork::write_stats() { void NeuralNetwork::write_stats() {
::std::cout << std::flush ::std::cout << std::flush
<< "Number of neurons: " << this->neurons->size() << ::std::endl << "Number of neurons: " << this->neurons.size() << ::std::endl
<< "Number of connections: " << this->connection_list.size() << ::std::endl << "Number of connections: " << this->connection_list.size() << ::std::endl
<< "Number of active weights: " << this->connection_weights.size() << ::std::endl << "Number of active weights: " << this->connection_weights.size() << ::std::endl
<< "Number of active biases: " << this->neuron_biases.size() << ::std::endl; << "Number of active biases: " << this->neuron_biases.size() << ::std::endl;
...@@ -982,7 +981,7 @@ namespace lib4neuro { ...@@ -982,7 +981,7 @@ namespace lib4neuro {
THROW_RUNTIME_ERROR("File " + file_path + " can not be opened!"); THROW_RUNTIME_ERROR("File " + file_path + " can not be opened!");
} }
ofs << "Number of neurons: " << this->neurons->size() << ::std::endl ofs << "Number of neurons: " << this->neurons.size() << ::std::endl
<< "Number of connections: " << this->connection_list.size() << ::std::endl << "Number of connections: " << this->connection_list.size() << ::std::endl
<< "Number of active weights: " << this->connection_weights.size() << ::std::endl << "Number of active weights: " << this->connection_weights.size() << ::std::endl
<< "Number of active biases: " << this->neuron_biases.size() << ::std::endl; << "Number of active biases: " << this->neuron_biases.size() << ::std::endl;
...@@ -999,7 +998,7 @@ namespace lib4neuro { ...@@ -999,7 +998,7 @@ namespace lib4neuro {
} }
void NeuralNetwork::write_stats(std::ofstream* file_path) { void NeuralNetwork::write_stats(std::ofstream* file_path) {
*file_path << "Number of neurons: " << this->neurons->size() << ::std::endl *file_path << "Number of neurons: " << this->neurons.size() << ::std::endl
<< "Number of connections: " << this->connection_list.size() << ::std::endl << "Number of connections: " << this->connection_list.size() << ::std::endl
<< "Number of active weights: " << this->connection_weights.size() << ::std::endl << "Number of active weights: " << this->connection_weights.size() << ::std::endl
<< "Number of active biases: " << this->neuron_biases.size() << ::std::endl; << "Number of active biases: " << this->neuron_biases.size() << ::std::endl;
...@@ -1033,14 +1032,14 @@ namespace lib4neuro { ...@@ -1033,14 +1032,14 @@ namespace lib4neuro {
void NeuralNetwork::add_inward_connection(size_t s, size_t t, size_t con_idx) { void NeuralNetwork::add_inward_connection(size_t s, size_t t, size_t con_idx) {
if (!this->inward_adjacency.at(s)) { if (!this->inward_adjacency.at(s)) {
this->inward_adjacency.at(s) = new ::std::vector<std::pair<size_t, size_t>>(0); this->inward_adjacency.at(s) = std::make_shared<std::vector<std::pair<size_t, size_t>>>(::std::vector<std::pair<size_t, size_t>>(0));
} }
this->inward_adjacency.at(s)->push_back(std::pair<size_t, size_t>(t, con_idx)); this->inward_adjacency.at(s)->push_back(std::pair<size_t, size_t>(t, con_idx));
} }
void NeuralNetwork::add_outward_connection(size_t s, size_t t, size_t con_idx) { void NeuralNetwork::add_outward_connection(size_t s, size_t t, size_t con_idx) {
if (!this->outward_adjacency.at(s)) { if (!this->outward_adjacency.at(s)) {
this->outward_adjacency.at(s) = new ::std::vector<std::pair<size_t, size_t>>(0); this->outward_adjacency.at(s) = std::make_shared<std::vector<std::pair<size_t, size_t>>>(::std::vector<std::pair<size_t, size_t>>(0));
} }
this->outward_adjacency.at(s)->push_back(std::pair<size_t, size_t>(t, con_idx)); this->outward_adjacency.at(s)->push_back(std::pair<size_t, size_t>(t, con_idx));
} }
...@@ -1079,7 +1078,7 @@ namespace lib4neuro { ...@@ -1079,7 +1078,7 @@ namespace lib4neuro {
// this->neuron_layers_feedbackward = new ::std::vector<std::vector<size_t>*>(0); // this->neuron_layers_feedbackward = new ::std::vector<std::vector<size_t>*>(0);
auto n = this->neurons->size(); auto n = this->neurons.size();
/* helpful counters */ /* helpful counters */
::std::vector<size_t> inward_saturation(n); ::std::vector<size_t> inward_saturation(n);
...@@ -1116,7 +1115,7 @@ namespace lib4neuro { ...@@ -1116,7 +1115,7 @@ namespace lib4neuro {
while (active_set_size[idx1] > 0) { while (active_set_size[idx1] > 0) {
/* we add the current active set as the new outward layer */ /* we add the current active set as the new outward layer */
::std::vector<size_t> *new_feedforward_layer = new ::std::vector<size_t>(active_set_size[idx1]); std::shared_ptr<::std::vector<size_t>> new_feedforward_layer = std::make_shared<::std::vector<size_t>>(::std::vector<size_t>(active_set_size[idx1]));
this->neuron_layers_feedforward.push_back(new_feedforward_layer); this->neuron_layers_feedforward.push_back(new_feedforward_layer);
//we iterate through the active neurons and propagate the signal //we iterate through the active neurons and propagate the signal
...@@ -1237,13 +1236,13 @@ namespace lib4neuro { ...@@ -1237,13 +1236,13 @@ namespace lib4neuro {
"doesn't specify input and output layers, which are compulsory!"); "doesn't specify input and output layers, which are compulsory!");
} }
this->neurons = new ::std::vector<Neuron *>(0); // this->neurons = new ::std::vector<Neuron *>(0);
// this->neuron_biases = new ::std::vector<double>(0); // this->neuron_biases = new ::std::vector<double>(0);
// this->neuron_potentials = new ::std::vector<double>(0); // this->neuron_potentials = new ::std::vector<double>(0);
// this->neuron_bias_indices = new ::std::vector<int>(0); // this->neuron_bias_indices = new ::std::vector<int>(0);
// this->connection_weights = new ::std::vector<double>(0); // this->connection_weights = new ::std::vector<double>(0);
this->connection_list = ::std::vector<std::shared_ptr<ConnectionFunctionGeneral>>(0); // this->connection_list = ::std::vector<std::shared_ptr<ConnectionFunctionGeneral>>(0);
// this->inward_adjacency = new ::std::vector<std::vector<std::pair<size_t, size_t>> *>(0); // this->inward_adjacency = new ::std::vector<std::vector<std::pair<size_t, size_t>> *>(0);
// this->outward_adjacency = new ::std::vector<std::vector<std::pair<size_t, size_t>> *>(0); // this->outward_adjacency = new ::std::vector<std::vector<std::pair<size_t, size_t>> *>(0);
// //
......
...@@ -55,7 +55,7 @@ namespace lib4neuro { ...@@ -55,7 +55,7 @@ namespace lib4neuro {
/** /**
* *
*/ */
std::vector<Neuron *> *neurons = nullptr; std::vector<Neuron *> neurons; // = nullptr;
/** /**
* *
...@@ -95,22 +95,22 @@ namespace lib4neuro { ...@@ -95,22 +95,22 @@ namespace lib4neuro {
/** /**
* *
*/ */
std::vector<std::vector<std::pair<size_t, size_t>> *> inward_adjacency; // = nullptr; std::vector<std::shared_ptr<std::vector<std::pair<size_t, size_t>>>> inward_adjacency; // = nullptr;
/** /**
* *
*/ */
std::vector<std::vector<std::pair<size_t, size_t>> *> outward_adjacency; // = nullptr; std::vector<std::shared_ptr<std::vector<std::pair<size_t, size_t>>>> outward_adjacency; // = nullptr;
/** /**
* *
*/ */
std::vector<std::vector<size_t> *> neuron_layers_feedforward; // = nullptr; std::vector<std::shared_ptr<std::vector<size_t>>> neuron_layers_feedforward; // = nullptr;
/** /**
* *
*/ */
std::vector<std::vector<size_t> *> neuron_layers_feedbackward; // = nullptr; std::vector<std::shared_ptr<std::vector<size_t>>> neuron_layers_feedbackward; // = nullptr;
/** /**
* *
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment