Skip to content
Snippets Groups Projects
Commit 8dbd01a6 authored by Martin Beseda's avatar Martin Beseda
Browse files

[WIP] Implementing mini-batch gradient computation.

parent 045d1ecf
No related branches found
No related tags found
No related merge requests found
......@@ -18,8 +18,8 @@ BUILD_TESTS=no
BUILD_LIB=yes
# C++ compiler
CXX_COMPILER="g++"
C_COMPILER="gcc"
#CXX_COMPILER="g++"
#C_COMPILER="gcc"
CXX_COMPILER="mpicxx"
C_COMPILER="mpicc"
......
#include <algorithm>
#include <limits>
#include <random>
#include <vector>
#include <numeric>
#include "../mpi_wrapper.h"
#include <armadillo>
#include <boost/serialization/export.hpp>
#include <ctime>
#include "DataSetSerialization.h"
#include "exceptions.h"
......@@ -197,6 +200,9 @@ namespace lib4neuro {
this->data = *data_ptr;
this->input_dim = this->data[0].first.size();
this->output_dim = this->data[0].second.size();
this->permutation_data_inds.resize(this->data.size());
this->active_elements.resize(this->data.size());
std::iota(this->active_elements.begin(), this->active_elements.end(), 0);
if (ns) {
std::shared_ptr<NormalizationStrategy> ns_tmp;
......@@ -231,6 +237,9 @@ namespace lib4neuro {
this->n_elements = 0;
this->input_dim = 1;
this->output_dim = 1;
this->permutation_data_inds.resize(this->data.size());
this->active_elements.resize(this->data.size());
std::iota(this->active_elements.begin(), this->active_elements.end(), 0);
if (ns) {
std::shared_ptr<NormalizationStrategy> ns_tmp(ns);
......@@ -253,6 +262,9 @@ namespace lib4neuro {
this->input_dim = bounds.size() / 2;
this->output_dim = output_dim;
this->n_elements = 0;
this->permutation_data_inds.resize(this->data.size());
this->active_elements.resize(this->data.size());
std::iota(this->active_elements.begin(), this->active_elements.end(), 0);
if (ns) {
std::shared_ptr<NormalizationStrategy> ns_tmp;
......@@ -296,6 +308,9 @@ namespace lib4neuro {
this->n_elements++;
this->data.emplace_back(std::make_pair(inputs,
outputs));
this->permutation_data_inds.resize(this->data.size());
this->active_elements.resize(this->data.size());
std::iota(this->active_elements.begin(), this->active_elements.end(), 0);
}
void DataSet::add_isotropic_data(double lower_bound,
......@@ -332,6 +347,10 @@ namespace lib4neuro {
}
this->n_elements += size;
this->permutation_data_inds.resize(this->data.size());
this->active_elements.resize(this->data.size());
std::iota(this->active_elements.begin(), this->active_elements.end(), 0);
}
void DataSet::add_isotropic_data(std::vector<double>& bounds,
......@@ -370,6 +389,10 @@ namespace lib4neuro {
this->data.emplace_back(std::make_pair(vec,
output_func(vec)));
}
this->permutation_data_inds.resize(this->data.size());
this->active_elements.resize(this->data.size());
std::iota(this->active_elements.begin(), this->active_elements.end(), 0);
}
std::vector<std::pair<std::vector<double>, std::vector<double>>>* DataSet::get_data() {
......@@ -722,4 +745,88 @@ namespace lib4neuro {
return this->stability_matrix;
}
void DataSet::activate_next_data_batch(size_t batch_size) {
// if (lib4neuro::mpi_rank == 0) { // TODO shouldn't be parallelized?
/* Activate the whole DataSet */
this->active_elements.clear();
if (batch_size > 0) {
if (this->current_batch_vector_ind == 0) {
/* If the DataSet has not been permuted yet or it was completely "used up", shuffle it randomly */
this->permutation_data_inds.resize(this->data.size());
std::iota(this->permutation_data_inds.begin(), this->permutation_data_inds.end(), 0);
std::shuffle(this->permutation_data_inds.begin(),
this->permutation_data_inds.end(),
std::mt19937(std::random_device()()));
}
/* Determine active elements of the DataSet */
size_t first_ind = this->current_batch_vector_ind;
size_t last_ind = this->current_batch_vector_ind + batch_size;
if (last_ind >= this->data.size()) {
this->current_batch_vector_ind = 0;
last_ind = this->data.size();
} else {
this->current_batch_vector_ind = last_ind;
}
// std::cout << first_ind << " " << last_ind << " ";
for (size_t i = first_ind; i < last_ind; i++) {
this->active_elements.emplace_back(i);
}
} else {
std::iota(this->active_elements.begin(), this->active_elements.end(), 0);
}
// std::cout << this->active_elements.size() << std::endl;
// for(auto e : this->active_elements) {
// std::cout << e << "[" << this->permutation_data_inds[e] << "] ";
// }
// std::cout << std::endl;
this->num_active_elements = this->active_elements.size();
// }
// MPI_Bcast(&this->num_active_elements, 1, MPI_UNSIGNED, 0, lib4neuro::mpi_active_comm);
// if(lib4neuro::mpi_rank > 0) {
//// std::cout << "resize " << lib4neuro::mpi_rank << " " << this->num_active_elements << std::endl;
// this->active_elements.resize(this->num_active_elements);
//// std::cout << "size " << lib4neuro::mpi_rank << " " << this->active_elements.size() << std::endl;
// }
}
std::vector<unsigned int>* DataSet::get_active_elements_indices() {
return &this->active_elements;
}
std::vector<unsigned int>* DataSet::get_permutation_data_indices() {
return &this->permutation_data_inds;
}
unsigned int DataSet::get_current_batch_vector_index() {
return this->current_batch_vector_ind;
}
unsigned int* DataSet::get_current_batch_vector_index_ptr() {
return &this->current_batch_vector_ind;
}
unsigned int* DataSet::get_permutation_data_indices_content() {
return &this->permutation_data_inds[0];
}
unsigned int* DataSet::get_num_active_elements_ptr() {
return &this->num_active_elements;
}
unsigned int* DataSet::get_active_elements_content() {
return &this->active_elements[0];
}
}
......@@ -58,8 +58,7 @@ namespace lib4neuro {
*/
std::vector<std::pair<std::vector<double>, std::vector<double>>> data;
std::vector<std::pair<std::vector<double>, std::vector<double>>> permutation_data;
std::vector<unsigned int> permutation_data_inds;
/**
*
......@@ -82,7 +81,16 @@ namespace lib4neuro {
arma::Mat<double>* stability_matrix;
unsigned int last_batch_vector_ind = 0;
unsigned int current_batch_vector_ind = 0;
/**
* Indices of the active elements in DataSet
*
* If empty, than the whole DataSet is active!
*/
std::vector<unsigned int> active_elements;
unsigned int num_active_elements;
public:
......@@ -343,7 +351,13 @@ namespace lib4neuro {
* @param max
* @return
*/
LIB4NEURO_API std::vector<std::pair<std::vector<double>, std::vector<double>>> get_next_data_batch(size_t max);
[[nodiscard]] LIB4NEURO_API std::vector<std::pair<std::vector<double>, std::vector<double>>> get_next_data_batch(size_t max);
/**
*
* @param batch_size
*/
LIB4NEURO_API void activate_next_data_batch(size_t batch_size);
/**
* Adds a new output column filled with zeros
......@@ -368,6 +382,20 @@ namespace lib4neuro {
[[nodiscard]] LIB4NEURO_API arma::Mat<double>* get_outputs_matrix();
[[nodiscard]] LIB4NEURO_API arma::Mat<double>* get_stability_matrix();
[[nodiscard]] LIB4NEURO_API std::vector<unsigned int>* get_active_elements_indices();
[[nodiscard]] LIB4NEURO_API std::vector<unsigned int>* get_permutation_data_indices();
[[nodiscard]] LIB4NEURO_API unsigned int* get_permutation_data_indices_content();
[[nodiscard]] LIB4NEURO_API unsigned int* get_active_elements_content();
[[nodiscard]] LIB4NEURO_API unsigned int get_current_batch_vector_index();
[[nodiscard]] LIB4NEURO_API unsigned int* get_current_batch_vector_index_ptr();
[[nodiscard]] LIB4NEURO_API unsigned int* get_num_active_elements_ptr();
};
}
#endif //INC_4NEURO_DATASET_H
......@@ -407,13 +407,49 @@ namespace lib4neuro {
std::fill(grad.begin(), grad.end(), 0.0);
batch = (unsigned int)(batch / lib4neuro::mpi_nranks);
if (batch > 0) {
*data = this->ds->get_random_data_batch(batch);
n_elements = data->size();
// if (lib4neuro::mpi_rank == 0) {
// *data = this->ds->get_random_data_batch(batch);
// n_elements = data->size();
// }
this->ds->activate_next_data_batch(batch);
// std::cout << lib4neuro::mpi_rank << " " << this->ds->get_permutation_data_indices()->size() << std::endl;
// MPI_Barrier(lib4neuro::mpi_active_comm);
// MPI_Bcast(this->ds->get_permutation_data_indices_content(),
// this->ds->get_permutation_data_indices()->size(),
// MPI_UNSIGNED,
// 0,
// lib4neuro::mpi_active_comm);
// MPI_Bcast(this->ds->get_active_elements_content(),
// this->ds->get_active_elements_indices()->size(),
// MPI_UNSIGNED,
// 0,
// lib4neuro::mpi_active_comm);
// unsigned int batch_ind;
// if(lib4neuro::mpi_rank == 0) {
// batch_ind = this->ds->get_current_batch_vector_index();
// }
// MPI_Bcast(this->ds->get_current_batch_vector_index_ptr(),
// 1,
// MPI_UNSIGNED,
// 0,
// lib4neuro::mpi_active_comm);
}
std::vector<double> error_derivative(dim_out);
for (auto el: *data) { // Iterate through every element in the test set
// for (auto el: *data) { // Iterate through every element in the test set
for(auto ind : *this->ds->get_active_elements_indices()) {
auto el = data->at(ind);
this->nets[0]->eval_single(el.first,
error_derivative,
......
......@@ -65,12 +65,12 @@ double optimize_via_gradient_descent(l4n::NeuralNetwork& net,
// for( double tol = 1e-1; tol > 1e-6; tol *= 1e-1 ){
l4n::GradientDescentBB gd(1e-4,
1000,
100000);
100000, 32);
l4n::LazyLearning lazy_wrapper( gd, 1e-4 );
lazy_wrapper.optimize(ef);
// l4n::LazyLearning lazy_wrapper( gd, 1e-4 );
// lazy_wrapper.optimize(ef);
// }
// gd.optimize(ef);
gd.optimize(ef);
// net.copy_parameter_space(gd.get_parameters());
......@@ -240,8 +240,8 @@ int main() {
//
//// optimize_via_NelderMead(net, mse);
//
double err1 = optimize_via_LBMQ(net, mse);
// double err2 = optimize_via_gradient_descent(net, mse);
// double err1 = optimize_via_LBMQ(net, mse);
double err2 = optimize_via_gradient_descent(net, mse);
// std::cout << "Weights: " << net.get_min_max_weight().first << " " << net.get_min_max_weight().second << std::endl;
......@@ -261,6 +261,12 @@ int main() {
// std::cout << output.at(0) << std::endl;
// }
// l4n::DataSet ds2(3, 1, 5, 0);
// ds2.activate_next_data_batch(2);
// ds2.activate_next_data_batch(2);
// ds2.activate_next_data_batch(2);
// ds2.activate_next_data_batch(2);
} catch (const std::exception& e) {
std::cerr << e.what() << std::endl;
exit(EXIT_FAILURE);
......@@ -269,8 +275,6 @@ int main() {
// arma::Mat<double> m = {{1,2,3}, {4,5,6}, {7,8,9}};
// arma::Col<double> v = arma::conv_to<std::vector<double>(m);
// std::cout << arma::stddev(m) << std::endl;
MPI_FINISH
return 0;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment