Skip to content
Snippets Groups Projects
Commit b44ad5fe authored by Michal Kravcenko's avatar Michal Kravcenko
Browse files

Merge branch 'dev' of code.it4i.cz:bes0030/4Neuro into tmp

# Conflicts:
#	src/LearningMethods/GradientDescent.cpp
#	src/examples/net_test_pde_1.cpp
parents 9e115633 dd1e7fd8
No related branches found
No related tags found
No related merge requests found
Showing
with 1044 additions and 357 deletions
# Windows 10 with Boost and Exprtk
# Windows 10 with Boost, Exprtk and Turtle
# downloaded and compiled locally as
# submodules and linked statically
win_visual_studio_static_local_deps:
......@@ -9,6 +9,8 @@ win_visual_studio_static_local_deps:
- call VsDevCmd.bat
- cd build_scripts\windows
- call win_download_dependencies.bat
- cd ..\..
- cd build_scripts\windows
- set DEPENDENCIES_LINK_TYPE=static
- set clean_after=yes
- call win_VS_build_x64_debug.bat
......@@ -19,7 +21,7 @@ win_visual_studio_static_local_deps:
- call win_run_tests.bat
- cd ..\..
# Windows 10 with Boost and Exprtk
# Windows 10 with Boost, Exprtk and Turtle
# downloaded and compiled locally as
# submodules and link dynamically
#
......@@ -59,7 +61,7 @@ win_visual_studio_static_local_deps:
# - cd ..\..
# Latest Ubuntu with Boost and Exprtk
# Latest Ubuntu with Boost, Exprtk and Turtle
# in system directories, Boost
# installed from the official repository
# => only dynamical linking possible
......@@ -73,8 +75,6 @@ ubuntu_boost_system:
- rm -rf external_dependencies/boost/*
- rm -rf external_dependencies/exprtk/*
- rm -rf exprtk
- git clone https://github.com/ArashPartow/exprtk.git
- cp exprtk/exprtk.hpp /usr/include
- export TERM=xterm
- cd build_scripts/linux
- export DEPENDENCIES_LINK_TYPE=shared
......@@ -87,7 +87,7 @@ ubuntu_boost_system:
- './linux_run_tests.sh'
- cd ../..
# Latest Ubuntu with Boost and Exprtk
# Latest Ubuntu with Boost, Exprtk and Turtle
# compiled locally as submodules and
# linked statically
ubuntu_boost_local_static_deps:
......@@ -100,6 +100,8 @@ ubuntu_boost_local_static_deps:
- export TERM=xterm
- cd build_scripts/linux
- ./download_dependencies.sh
- cd ../..
- cd build_scripts/linux
- export DEPENDENCIES_LINK_TYPE=static
- export CLEAN_AFTER=yes
- ./linux_gcc_build_x64_debug_local.sh
......@@ -110,7 +112,7 @@ ubuntu_boost_local_static_deps:
- './linux_run_tests.sh'
- cd ../..
# Latest Ubuntu with Boost and Exprtk
# Latest Ubuntu with Boost, Exprtk and Turtle
# compiled locally as submodules and
# linked dynamically
ubuntu_boost_local_dynamic_deps:
......@@ -123,6 +125,8 @@ ubuntu_boost_local_dynamic_deps:
- export TERM=xterm
- cd build_scripts/linux
- ./download_dependencies.sh
- cd ../..
- cd build_scripts/linux
- export DEPENDENCIES_LINK_TYPE=shared
- export CLEAN_AFTER=yes
- ./linux_gcc_build_x64_debug_local.sh
......
......@@ -4,3 +4,6 @@
[submodule "external_dependencies/boost"]
path = external_dependencies/boost
url = https://github.com/boostorg/boost.git
[submodule "external_dependencies/turtle"]
path = external_dependencies/turtle
url = https://github.com/mat007/turtle.git
......@@ -21,7 +21,7 @@ if (NOT CMAKE_BUILD_TYPE)
set (CMAKE_BUILD_TYPE RELEASE CACHE STRING
"Choose the type of build, options are: None Debug Release."
FORCE)
elseif("CMAKE_BUILD_TYPE" STREQUAL "Debug")
elseif(CMAKE_BUILD_TYPE STREQUAL "Debug")
#TODO rewrite to use add_compile_definitions
endif (NOT CMAKE_BUILD_TYPE)
......@@ -45,6 +45,8 @@ elseif( "${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC" )
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /W0 /bigobj")
add_compile_options("/D _SCL_SECURE_NO_WARNINGS")
add_compile_options("/D_CRT_SECURE_NO_WARNINGS")
elseif("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MINGW")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mbig-obj")
else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall")
endif()
......@@ -82,9 +84,12 @@ message("Boost_INCLUDE_DIRS: ${Boost_INCLUDE_DIRS}")
message("Boost_LIBRARY_DIRS: ${Boost_LIBRARY_DIRS}")
message("Boost_LIBRARIES: ${Boost_LIBRARIES}")
message("lib4neuro LIB DIR: ${LIB4NEURO_DIR}")
find_package(exprtk)
message("EXPRTK_INCLUDE_DIRS: ${EXPRTK_INCLUDE_DIRS}")
find_package(Turtle)
message("TURTLE_INCLUDE_DIR: ${TURTLE_INCLUDE_DIR}")
#------------------------------------------#
# Detect maximum available number of cores #
......
......@@ -59,13 +59,8 @@ find_path(
# as Boost headers are supposed to be included like
# #include<boost/...> according to the documentation
set(TMP "")
#if(WIN32)
# string(REPLACE "\\boost\\boost" "\\boost" TMP ${Boost_INCLUDE_DIRS})
# list(APPEND Boost_INCLUDE_DIRS ${TMP})
#else()
string(REPLACE "/boost/boost" "/boost" TMP ${Boost_INCLUDE_DIRS})
list(APPEND Boost_INCLUDE_DIRS ${TMP})
#endif()
string(REPLACE "/boost/boost" "/boost" TMP ${Boost_INCLUDE_DIRS})
list(APPEND Boost_INCLUDE_DIRS ${TMP})
if(NOT Boost_INCLUDE_DIRS)
message(FATAL_ERROR "Boost include directory was not found! Please, set variable BOOST_INCLUDEDIR to the correct path.")
......
# Find headers and libraries
FIND_PATH(
TURTLE_INCLUDE_DIR
NAMES
mock.hpp
HINTS
$ENV{TURTLE_INCLUDE_DIR}
${TURTLE_INCLUDE_DIR}
external_dependencies/turtle
PATHS
/usr
/usr/local
/home
/opt/local
PATH_SUFFIXES
include
include/turtle
)
# Set TURTLE_FOUND honoring the QUIET and REQUIRED arguments
INCLUDE(FindPackageHandleStandardArgs)
FIND_PACKAGE_HANDLE_STANDARD_ARGS(
turtle
"Turtle was NOT found!"
TURTLE_INCLUDE_DIR)
# Output variables
IF(TURTLE_FOUND)
# Include dirs
SET(TURTLE_INCLUDE_DIRS ${TURTLE_INCLUDE_DIR})
ELSE()
MESSAGE(FATAL_ERROR "Set, please, the environmental variable TURTLE_INCLUDE_DIR to the folder, where 'mock.hpp' is located...")
ENDIF(TURTLE_FOUND)
# Add path only to the 'include' folder
set(TMP "")
string(REPLACE "/include/turtle" "/include" TMP ${TURTLE_INCLUDE_DIR})
list(APPEND TURTLE_INCLUDE_DIR ${TMP})
# Advanced options for not cluttering the cmake UIs:
MARK_AS_ADVANCED(TURTLE_INCLUDE_DIR)
......@@ -6,6 +6,6 @@ export CLEAN_AFTER=no
cd build_scripts/linux
./download_dependencies.sh
export DEPENDENCIES_LINK_TYPE=static
export DEPENDENCIES_LINK_TYPE=shared
./linux_gcc_build_x64_debug_local.sh
cd ../..
Subproject commit 03d255a85568f504c301a66b58edad30ae3f211d
Subproject commit 67c6344e238d9f484dc34ab52c9de78334ec6acf
Subproject commit 9836f21d07b1bf799e6877324268708f61c01f73
Subproject commit b3b4cee1c52baf935d68fe3bb7fb1a0ec6b79694
Subproject commit e92f52821da312c5e30b447c8046893e576aefca
......@@ -8,20 +8,19 @@
//TODO make only public interface visible
#include "../src/DataSet/DataSet.h"
#include "../src/LearningMethods/ParticleSwarm.h"
#include "../src/NetConnection/ConnectionFunctionGeneral.h"
#include "../src/NetConnection/ConnectionFunctionIdentity.h"
#include "../src/Network/NeuralNetwork.h"
//#include "../src/Network/NeuralNetworkSum.h"
#include "../src/Network/NeuralNetworkSum.h"
#include "../src/Neuron/Neuron.h"
#include "../src/Neuron/NeuronConstant.h"
#include "../src/Neuron/NeuronBinary.h"
#include "../src/Neuron/NeuronLinear.h"
#include "../src/Neuron/NeuronLogistic.h"
#include "../src/Solvers/DESolver.h"
#include "../src/ErrorFunction/ErrorFunctions.h"
#include "../src/constants.h"
#include "../src/settings.h"
#include "../src/message.h"
#include "../src/LearningMethods/GradientDescent.h"
#include "../src/CSVReader/CSVReader.h"
// Abbreaviate lib4neuro namespace to l4n
namespace l4n = lib4neuro;
#endif //INC_4NEURO_4NEURO_H
......@@ -7,24 +7,22 @@ if ("${BUILD_EXAMPLES}" STREQUAL "yes")
endif ()
if ("${BUILD_LIB}" STREQUAL "yes")
add_library(
exprtk_wrap
STATIC
General/ExprtkWrapper.cpp
)
add_library(
exprtk_wrap
target_include_directories(
exprtk_wrap
SHARED
PRIVATE
${EXPRTK_INCLUDE_DIR}
${Boost_INCLUDE_DIRS}
)
General/ExprtkWrapper.cpp
Exception/Exceptions.cpp
)
target_compile_options(
exprtk_wrap PRIVATE -fPIC
)
target_include_directories(
exprtk_wrap
PRIVATE
${EXPRTK_INCLUDE_DIR}
${Boost_INCLUDE_DIRS}
)
target_link_libraries(
exprtk_wrap
......@@ -36,18 +34,21 @@ if ("${BUILD_LIB}" STREQUAL "yes")
add_library(lib4neuro SHARED
Neuron/Neuron.cpp
Neuron/NeuronBinary.cpp
Neuron/NeuronConstant.cpp
Neuron/NeuronConstant.cpp
Neuron/NeuronLinear.cpp
Neuron/NeuronLogistic.cpp
Network/NeuralNetwork.cpp
Network/NeuralNetworkSum.cpp
NetConnection/ConnectionFunctionGeneral.cpp
NetConnection/ConnectionFunctionIdentity.cpp
LearningMethods/ParticleSwarm.cpp
LearningMethods/GradientDescent.cpp
LearningMethods/ParticleSwarm.cpp
LearningMethods/GradientDescent.cpp
DataSet/DataSet.cpp
ErrorFunction/ErrorFunctions.cpp
Solvers/DESolver.cpp
Exception/Exceptions.cpp
CSVReader/CSVReader.cpp
CrossValidator/CrossValidator.cpp
)
target_link_libraries(
......@@ -87,7 +88,7 @@ if ("${BUILD_LIB}" STREQUAL "yes")
add_library(${PREFIX}boost_unit_test STATIC boost_test_lib_dummy.cpp)
elseif("${DEPENDENCIES_LINK_TYPE}" STREQUAL "static")
add_library(${PREFIX}boost_unit_test STATIC boost_test_lib_dummy.cpp)
elseif("${DEPENDENCIES_LINK_TYPE}" STREQUAL "shared")
elseif("${DEPENDENCIES_LINK_TYPE}" STREQUAL "shared")
add_library(${PREFIX}boost_unit_test SHARED boost_test_lib_dummy.cpp)
endif()
......
//
// Created by martin on 14.11.18.
//
#include <string>
#include <fstream>
#include <sstream>
#include "CSVReader.h"
namespace lib4neuro {
CSVReader::CSVReader(std::string file_path, std::string delimiter, bool ignore_first_line) {
this->file_path = file_path;
this->delimiter = delimiter;
this->ignore_first_line = ignore_first_line;
this->header_included = ignore_first_line;
this->data = new std::vector<std::vector<std::string>>;
}
void CSVReader::read() {
std::ifstream ifs(this->file_path);
std::string line;
if(this->ignore_first_line) {
std::getline(ifs, line);
}
/* Read single line from the file */
while(std::getline(ifs, line)) {
/* Ignore empty line */
if(line == "") {
continue;
}
/* Separate elements of the line according to the delimiter */
size_t last = 0;
size_t next = 0;
std::vector<std::string> separated_line;
while ((next = line.find(this->delimiter, last)) != std::string::npos) {
separated_line.emplace_back(line.substr(last, next - last));
last = next + 1;
}
separated_line.emplace_back(line.substr(last));
/* Store the elements from the line to the vector with data */
this->data->emplace_back(separated_line);
}
ifs.close();
}
std::vector<std::vector<std::string>>* CSVReader::get_data() {
return this->data;
}
void CSVReader::print_data() {
for(auto line : *this->data) {
for(auto e : line) {
std::cout << e << " ";
}
std::cout << std::endl;
}
}
DataSet CSVReader::get_data_set(std::vector<unsigned int>* input_col_indices,
std::vector<unsigned int>* output_col_indices) {
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_set_contents;
for(auto line : *this->data) {
//TODO check for non-numerical (or empty) values in data
std::vector<double> input;
for(auto ind : *input_col_indices) {
input.push_back(std::stod(line.at(ind)));
}
std::vector<double> output;
for(auto ind : *output_col_indices) {
output.emplace_back(std::stod(line.at(ind)));
}
data_set_contents.push_back(std::make_pair(input, output));
}
return DataSet(&data_set_contents);
}
}
\ No newline at end of file
//
// Created by martin on 14.11.18.
//
#ifndef LIB4NEURO_CSVREADER_H
#define LIB4NEURO_CSVREADER_H
#include <string>
#include "../settings.h"
#include "../DataSet/DataSet.h"
namespace lib4neuro {
/**
*
*/
class CSVReader {
//TODO make more efficient - possibly with external library?
private:
/**
*
*/
std::string file_path;
/**
*
*/
bool header_included;
/**
*
*/
std::string delimiter;
/**
*
*/
bool ignore_first_line;
/**
*
*/
std::vector<std::vector<std::string>>* data;
public:
/**
*
* @param file_path
* @param delimiter
* @param ignore_first_line
*/
LIB4NEURO_API CSVReader(std::string file_path, std::string delimiter=",", bool ignore_first_line=false);
/**
*
*/
LIB4NEURO_API void read();
/**
*
* @return
*/
LIB4NEURO_API std::vector<std::vector<std::string>>* get_data();
/**
*
* @param input_col_indices
* @param output_col_indices
* @return
*/
LIB4NEURO_API DataSet get_data_set(std::vector<unsigned int>* input_col_indices,
std::vector<unsigned int>* output_col_indices);
/**
*
*/
LIB4NEURO_API void print_data();
};
}
#endif //LIB4NEURO_CSVREADER_H
//
// Created by martin on 14.11.18.
//
#include "CrossValidator.h"
#include "../message.h"
namespace lib4neuro {
LIB4NEURO_API CrossValidator::CrossValidator(ILearningMethods* optimizer, ErrorFunction* ef) {
this->optimizer = optimizer;
this->ef = ef;
}
LIB4NEURO_API void CrossValidator::run_k_fold_test(unsigned int k, unsigned int tests_number) {
NeuralNetwork *net = this->ef->get_network_instance();
for(unsigned int i = 0; i < tests_number; i++) {
std::cout << "Cross-validation run " << i+1 << std::endl;
this->ef->divide_data_train_test(1.0/k);
std::cout << "Cross-validation run " << i+1 << ", number of train data points: " << this->ef->get_dataset()->get_n_elements() << std::endl;
net->print_weights();
net->randomize_parameters();
net->scale_parameters( 1.0 / (net->get_n_weights() + net->get_n_biases()));
net->print_weights();
this->optimizer->optimize(*this->ef);
this->ef->return_full_data_set_for_training();
}
}
}
\ No newline at end of file
//
// Created by martin on 14.11.18.
//
#ifndef LIB4NEURO_CROSSVALIDATOR_H
#define LIB4NEURO_CROSSVALIDATOR_H
#include "../settings.h"
#include "../DataSet/DataSet.h"
#include "../LearningMethods/ILearningMethods.h"
namespace lib4neuro {
/**
*
*/
class CrossValidator {
private:
/**
*
*/
ILearningMethods* optimizer;
/**
*
*/
ErrorFunction* ef;
public:
/**
*
* @param optimizer
* @param data_set
*/
LIB4NEURO_API CrossValidator(ILearningMethods* optimizer, ErrorFunction* ef);
/**
*
* @param k
* @param tests_number
*/
LIB4NEURO_API void run_k_fold_test(unsigned int k, unsigned int test_number);
};
}
#endif //LIB4NEURO_CROSSVALIDATOR_H
......@@ -5,173 +5,183 @@
#include "DataSetSerialization.h"
InvalidDimension::InvalidDimension() : std::runtime_error("Invalid dimension specified!") {};
namespace lib4neuro {
InvalidDimension::InvalidDimension(std::string msg) : std::runtime_error(msg.c_str()) {};
DataSet::DataSet() {}
DataSet::DataSet(std::string file_path) {
std::ifstream ifs (file_path);
boost::archive::text_iarchive ia(ifs);
ia >> *this;
ifs.close();
}
DataSet::DataSet(std::string file_path) {
std::ifstream ifs(file_path);
boost::archive::text_iarchive ia(ifs);
ia >> *this;
ifs.close();
}
DataSet::DataSet(std::vector<std::pair<std::vector<double>, std::vector<double>>> *data_ptr) {
this->n_elements = data_ptr->size();
this->data = *data_ptr;
DataSet::DataSet(std::vector<std::pair<std::vector<double>, std::vector<double>>> *data_ptr) {
this->n_elements = data_ptr->size();
this->data = *data_ptr;
this->input_dim = this->data[0].first.size();
this->output_dim = this->data[0].second.size();
this->input_dim = this->data[0].first.size();
this->output_dim = this->data[0].second.size();
//TODO check the complete data set for input/output dimensions
}
//TODO check the complete data set for input/output dimensions
}
DataSet::DataSet(double lower_bound, double upper_bound, unsigned int size, double output) {
std::vector<std::pair<std::vector<double>, std::vector<double>>> new_data_vec;
this->data = new_data_vec;
this->n_elements = 0;
this->input_dim = 1;
this->output_dim = 1;
DataSet::DataSet(double lower_bound, double upper_bound, unsigned int size, double output) {
std::vector<std::pair<std::vector<double>, std::vector<double>>> new_data_vec;
this->data = new_data_vec;
this->n_elements = 0;
this->input_dim = 1;
this->output_dim = 1;
this->add_isotropic_data(lower_bound, upper_bound, size, output);
}
this->add_isotropic_data(lower_bound, upper_bound, size, output);
}
DataSet::DataSet(std::vector<double> &bounds, unsigned int no_elems_in_one_dim, std::vector<double> (*output_func)(std::vector<double>&), unsigned int output_dim) {
std::vector<std::pair<std::vector<double>, std::vector<double>>> new_data_vec;
this->data = new_data_vec;
this->input_dim = bounds.size()/2;
this->output_dim = output_dim;
this->n_elements = 0;
DataSet::DataSet(std::vector<double> &bounds, unsigned int no_elems_in_one_dim,
std::vector<double> (*output_func)(std::vector<double> &), unsigned int output_dim) {
std::vector<std::pair<std::vector<double>, std::vector<double>>> new_data_vec;
this->data = new_data_vec;
this->input_dim = bounds.size() / 2;
this->output_dim = output_dim;
this->n_elements = 0;
this->add_isotropic_data(bounds, no_elems_in_one_dim, output_func);
}
this->add_isotropic_data(bounds, no_elems_in_one_dim, output_func);
}
void DataSet::add_data_pair(std::vector<double> &inputs, std::vector<double> &outputs) {
if(inputs.size() != this->input_dim) {
throw InvalidDimension("Bad input dimension.");
} else if(outputs.size() != this->output_dim) {
throw InvalidDimension("Bad output dimension.");
}
void DataSet::add_data_pair(std::vector<double> &inputs, std::vector<double> &outputs) {
if(this->n_elements == 0 && this->input_dim == 0 && this->output_dim == 0) {
this->input_dim = inputs.size();
this->output_dim = outputs.size();
}
this->n_elements++;
this->data.emplace_back(std::make_pair(inputs, outputs));
}
if (inputs.size() != this->input_dim) {
throw InvalidDimension("Bad input dimension.");
} else if (outputs.size() != this->output_dim) {
throw InvalidDimension("Bad output dimension.");
}
void DataSet::add_isotropic_data(double lower_bound, double upper_bound, unsigned int size, double output) {
if(this->input_dim != 1 || this->output_dim != 1) {
throw InvalidDimension("Cannot add data with dimensionality 1:1 when the data set "
"is of different dimensionality!");
this->n_elements++;
this->data.emplace_back(std::make_pair(inputs, outputs));
}
double frac = (upper_bound - lower_bound) / (size - 1);
std::vector<double> inp, out;
void DataSet::add_isotropic_data(double lower_bound, double upper_bound, unsigned int size, double output) {
out = {output};
if (this->input_dim != 1 || this->output_dim != 1) {
throw InvalidDimension("Cannot add data with dimensionality 1:1 when the data set "
"is of different dimensionality!");
}
for(unsigned int i = 0; i < size; ++i){
inp = {frac*i};
this->data.emplace_back(std::make_pair(inp, out));
double frac = (upper_bound - lower_bound) / (size - 1);
std::vector<double> inp, out;
out = {output};
for (unsigned int i = 0; i < size; ++i) {
inp = {frac * i};
this->data.emplace_back(std::make_pair(inp, out));
}
this->n_elements += size;
}
this->n_elements += size;
}
void DataSet::add_isotropic_data(std::vector<double> &bounds, unsigned int no_elems_in_one_dim,
std::vector<double> (*output_func)(std::vector<double> &)) {
// TODO add check of dataset dimensions
void DataSet::add_isotropic_data(std::vector<double> &bounds, unsigned int no_elems_in_one_dim, std::vector<double> (*output_func)(std::vector<double>&)) {
// TODO add check of dataset dimensions
std::vector<std::vector<double>> grid;
std::vector<double> tmp;
double frac;
std::vector<std::vector<double>> grid;
std::vector<double> tmp;
double frac;
for (unsigned int i = 0; i < bounds.size(); i += 2) {
frac = (bounds[i] + bounds[i + 1]) / (no_elems_in_one_dim - 1);
tmp.clear();
for (double j = bounds[i]; j <= bounds[i + 1]; j += frac) {
tmp.emplace_back(j);
}
for(unsigned int i = 0; i < bounds.size(); i += 2) {
frac = (bounds[i] + bounds[i+1]) / (no_elems_in_one_dim - 1);
tmp.clear();
for(double j = bounds[i]; j <= bounds[i+1]; j += frac) {
tmp.emplace_back(j);
grid.emplace_back(tmp);
}
grid.emplace_back(tmp);
grid = this->cartesian_product(&grid);
for (auto vec : grid) {
this->n_elements++;
this->data.emplace_back(std::make_pair(vec, output_func(vec)));
}
}
grid = this->cartesian_product(&grid);
std::vector<std::pair<std::vector<double>, std::vector<double>>> *DataSet::get_data() {
return &(this->data);
}
for(auto vec : grid) {
this->n_elements++;
this->data.emplace_back(std::make_pair(vec, output_func(vec)));
size_t DataSet::get_n_elements() {
return this->n_elements;
}
}
std::vector<std::pair<std::vector<double>, std::vector<double>>>* DataSet::get_data() {
return &(this->data);
}
size_t DataSet::get_n_elements() {
return this->n_elements;
}
size_t DataSet::get_input_dim() {
return this->input_dim;
}
size_t DataSet::get_output_dim() {
return this->output_dim;
}
void DataSet::print_data() {
if (n_elements) {
for (auto p : this->data) {
/* INPUT */
for (auto v : std::get<0>(p)) {
std::cout << v << " ";
}
std::cout << "-> ";
size_t DataSet::get_input_dim() {
return this->input_dim;
}
/* OUTPUT */
for (auto v : std::get<1>(p)) {
std::cout << v << " ";
}
size_t DataSet::get_output_dim() {
return this->output_dim;
}
void DataSet::print_data() {
if (n_elements) {
for (auto p : this->data) {
/* INPUT */
for (auto v : std::get<0>(p)) {
std::cout << v << " ";
}
std::cout << "-> ";
std::cout << std::endl;
/* OUTPUT */
for (auto v : std::get<1>(p)) {
std::cout << v << " ";
}
std::cout << std::endl;
}
}
}
}
void DataSet::store_text(std::string &file_path) {
//TODO check if stream was successfully opened
std::ofstream ofs(file_path);
boost::archive::text_oarchive oa(ofs);
oa << *this;
ofs.close();
}
template <class T>
std::vector<std::vector<T>> DataSet::cartesian_product(const std::vector<std::vector<T>>* v) {
std::vector<std::vector<double>> v_combined_old, v_combined, v_tmp;
std::vector<double> tmp;
for(const auto& e : v->at(0)) {
tmp = {e};
v_combined.emplace_back(tmp);
void DataSet::store_text(std::string &file_path) {
//TODO check if stream was successfully opened
std::ofstream ofs(file_path);
boost::archive::text_oarchive oa(ofs);
oa << *this;
ofs.close();
}
for(unsigned int i = 1; i < v->size(); i++) { // Iterate through remaining vectors of 'v'
v_combined_old = v_combined;
v_combined.clear();
template<class T>
std::vector<std::vector<T>> DataSet::cartesian_product(const std::vector<std::vector<T>> *v) {
std::vector<std::vector<double>> v_combined_old, v_combined, v_tmp;
std::vector<double> tmp;
for(const auto& e : v->at(i)) {
for(const auto& vec : v_combined_old) {
tmp = vec;
tmp.emplace_back(e);
for (const auto &e : v->at(0)) {
tmp = {e};
v_combined.emplace_back(tmp);
}
for (unsigned int i = 1; i < v->size(); i++) { // Iterate through remaining vectors of 'v'
v_combined_old = v_combined;
v_combined.clear();
/* Add only unique elements */
if(std::find(v_combined.begin(), v_combined.end(), tmp) == v_combined.end()) {
v_combined.emplace_back(tmp);
for (const auto &e : v->at(i)) {
for (const auto &vec : v_combined_old) {
tmp = vec;
tmp.emplace_back(e);
/* Add only unique elements */
if (std::find(v_combined.begin(), v_combined.end(), tmp) == v_combined.end()) {
v_combined.emplace_back(tmp);
}
}
}
}
return v_combined;
}
return v_combined;
}
\ No newline at end of file
//
// Created by martin on 7/13/18.
//
#include "DataSetSerialization.h"
namespace lib4neuro {
DataSet::DataSet(std::string file_path) {
std::ifstream ifs(file_path);
boost::archive::text_iarchive ia(ifs);
ia >> *this;
ifs.close();
}
<<<<<<< HEAD
=======
DataSet::DataSet() {
}
>>>>>>> 5fd0f3dcf535edfc3e3f4dd7b4cb256f2e95e8fe
DataSet::DataSet(std::vector<std::pair<std::vector<double>, std::vector<double>>> *data_ptr) {
this->n_elements = data_ptr->size();
this->data = *data_ptr;
this->input_dim = this->data[0].first.size();
this->output_dim = this->data[0].second.size();
//TODO check the complete data set for input/output dimensions
}
DataSet::DataSet(double lower_bound, double upper_bound, unsigned int size, double output) {
std::vector<std::pair<std::vector<double>, std::vector<double>>> new_data_vec;
this->data = new_data_vec;
this->n_elements = 0;
this->input_dim = 1;
this->output_dim = 1;
this->add_isotropic_data(lower_bound, upper_bound, size, output);
}
DataSet::DataSet(std::vector<double> &bounds, unsigned int no_elems_in_one_dim,
std::vector<double> (*output_func)(std::vector<double> &), unsigned int output_dim) {
std::vector<std::pair<std::vector<double>, std::vector<double>>> new_data_vec;
this->data = new_data_vec;
this->input_dim = bounds.size() / 2;
this->output_dim = output_dim;
this->n_elements = 0;
this->add_isotropic_data(bounds, no_elems_in_one_dim, output_func);
}
void DataSet::add_data_pair(std::vector<double> &inputs, std::vector<double> &outputs) {
if (inputs.size() != this->input_dim) {
throw InvalidDimension("Bad input dimension.");
} else if (outputs.size() != this->output_dim) {
throw InvalidDimension("Bad output dimension.");
}
this->n_elements++;
this->data.emplace_back(std::make_pair(inputs, outputs));
}
void DataSet::add_isotropic_data(double lower_bound, double upper_bound, unsigned int size, double output) {
if (this->input_dim != 1 || this->output_dim != 1) {
throw InvalidDimension("Cannot add data with dimensionality 1:1 when the data set "
"is of different dimensionality!");
}
double frac = (upper_bound - lower_bound) / (size - 1);
std::vector<double> inp, out;
out = {output};
for (unsigned int i = 0; i < size; ++i) {
inp = {frac * i};
this->data.emplace_back(std::make_pair(inp, out));
}
this->n_elements += size;
}
void DataSet::add_isotropic_data(std::vector<double> &bounds, unsigned int no_elems_in_one_dim,
std::vector<double> (*output_func)(std::vector<double> &)) {
// TODO add check of dataset dimensions
std::vector<std::vector<double>> grid;
std::vector<double> tmp;
double frac;
for (unsigned int i = 0; i < bounds.size(); i += 2) {
frac = (bounds[i] + bounds[i + 1]) / (no_elems_in_one_dim - 1);
tmp.clear();
for (double j = bounds[i]; j <= bounds[i + 1]; j += frac) {
tmp.emplace_back(j);
}
grid.emplace_back(tmp);
}
grid = this->cartesian_product(&grid);
for (auto vec : grid) {
this->n_elements++;
this->data.emplace_back(std::make_pair(vec, output_func(vec)));
}
}
std::vector<std::pair<std::vector<double>, std::vector<double>>> *DataSet::get_data() {
return &(this->data);
}
size_t DataSet::get_n_elements() {
return this->n_elements;
}
size_t DataSet::get_input_dim() {
return this->input_dim;
}
size_t DataSet::get_output_dim() {
return this->output_dim;
}
<<<<<<< HEAD
void DataSet::print_data() {
if (n_elements) {
for (auto p : this->data) {
/* INPUT */
for (auto v : std::get<0>(p)) {
std::cout << v << " ";
}
std::cout << "-> ";
/* OUTPUT */
for (auto v : std::get<1>(p)) {
std::cout << v << " ";
}
=======
void DataSet::print_data() {
if (n_elements) {
for (auto p : this->data) {
/* INPUT */
for (auto v : std::get<0>(p)) {
std::cout << v << " ";
}
std::cout << "-> ";
/* OUTPUT */
for (auto v : std::get<1>(p)) {
std::cout << v << " ";
}
>>>>>>> 5fd0f3dcf535edfc3e3f4dd7b4cb256f2e95e8fe
std::cout << std::endl;
}
}
}
void DataSet::store_text(std::string &file_path) {
//TODO check if stream was successfully opened
std::ofstream ofs(file_path);
boost::archive::text_oarchive oa(ofs);
oa << *this;
ofs.close();
}
template<class T>
std::vector<std::vector<T>> DataSet::cartesian_product(const std::vector<std::vector<T>> *v) {
std::vector<std::vector<double>> v_combined_old, v_combined, v_tmp;
std::vector<double> tmp;
for (const auto &e : v->at(0)) {
tmp = {e};
v_combined.emplace_back(tmp);
}
for (unsigned int i = 1; i < v->size(); i++) { // Iterate through remaining vectors of 'v'
v_combined_old = v_combined;
v_combined.clear();
for (const auto &e : v->at(i)) {
for (const auto &vec : v_combined_old) {
tmp = vec;
tmp.emplace_back(e);
/* Add only unique elements */
if (std::find(v_combined.begin(), v_combined.end(), tmp) == v_combined.end()) {
v_combined.emplace_back(tmp);
}
}
}
}
return v_combined;
}
}
\ No newline at end of file
......@@ -9,181 +9,168 @@
#include <fstream>
#include <utility>
#include <vector>
#include <exception>
#include <string>
#include <functional>
#include "../settings.h"
/**
* Class representing an error caused by an incorrect
* input/output dimension specification
*/
class InvalidDimension: public std::runtime_error {
public:
/**
* Constructor with the general error message
*/
InvalidDimension();
/**
* Constructor with specific error message
* @param msg Specific error message
*/
explicit InvalidDimension(std::string msg);
};
/**
* Class representing data, which can be used for training
* and testing purposes.
*/
class DataSet {
// friend class boost::serialization::access;
private:
/**
* Number of elements in the data set
*/
size_t n_elements;
/**
* Dimension of the input
*/
size_t input_dim = 0;
/**
* Dimension of the output
*/
size_t output_dim = 0;
/**
* Stored data in the format of pairs of corresponding
* input and output vectors
*/
std::vector<std::pair<std::vector<double>, std::vector<double>>> data;
template <class T>
std::vector<std::vector<T>> cartesian_product(const std::vector<std::vector<T>>* v);
public:
/**
* Struct used to access private properties from
* the serialization function
*/
struct access;
/**
* Constructor reading data from the file
* @param file_path Path to the file with stored data set
*/
LIB4NEURO_API DataSet(std::string file_path);
/**
* Constructor accepting data vector
* @param data_ptr Pointer to the vector containing data
*/
LIB4NEURO_API DataSet(std::vector<std::pair<std::vector<double>, std::vector<double>>>* data_ptr);
/**
* Creates a new data set with input values equidistantly positioned
* over the certain interval and the output value
* being constant
*
* Both input and output are 1-dimensional
*
* @todo add bounds as vectors for multi-dimensional data-sets
*
* @param lower_bound Lower bound of the input data interval
* @param upper_bound Upper bound of the input data interval
* @param size Number of input-output pairs generated
* @param output Constant output value
*/
LIB4NEURO_API DataSet(double lower_bound, double upper_bound, unsigned int size, double output);
/**
*
* @param bounds
* @param no_elems_in_one_dim
* @param output_func
* @param output_dim
*/
LIB4NEURO_API DataSet(std::vector<double> &bounds, unsigned int no_elems_in_one_dim, std::vector<double> (*output_func)(std::vector<double>&), unsigned int output_dim);
/**
* Getter for number of elements
* @return Number of elements in the data set
*/
LIB4NEURO_API size_t get_n_elements();
/**
* Returns the input dimension
* @return Input dimension
*/
LIB4NEURO_API size_t get_input_dim();
/**
* Return the output dimension
* @return Output dimension
*/
LIB4NEURO_API size_t get_output_dim();
/**
* Getter for the data structure
* @return Vector of data
*/
LIB4NEURO_API std::vector<std::pair<std::vector<double>, std::vector<double>>>* get_data();
/**
* Adds a new pair of data to the data set
* @param inputs Vector of input data
* @param outputs Vector of output data corresponding to the input data
*/
LIB4NEURO_API void add_data_pair(std::vector<double> &inputs, std::vector<double> &outputs);
//TODO expand method to generate multiple data types - chebyshev etc.
/**
* Adds a new data with input values equidistantly positioned
* over the certain interval and the output value
* being constant
*
* Both input and output are 1-dimensional
*
* @param lower_bound Lower bound of the input data interval
* @param upper_bound Upper bound of the input data interval
* @param size Number of input-output pairs generated
* @param output Constant output value
*/
LIB4NEURO_API void add_isotropic_data(double lower_bound, double upper_bound, unsigned int size, double output);
/**
* Adds a new data with input values equidistantly positioned
* over the certain interval and the output value
* being constant
*
* Input can have arbitrary many dimensions,
* output can be an arbitrary function
*
* @param bounds Odd values are lower bounds and even values are corresponding upper bounds
* @param size Number of input-output pairs generated
* @param output_func Function determining output value
*/
LIB4NEURO_API void add_isotropic_data(std::vector<double> &bounds, unsigned int no_elems_in_one_dim, std::vector<double> (*output_func)(std::vector<double>&));
//TODO Chebyshev - ch. interpolation points, i-th point = cos(i*alpha) from 0 to pi
/**
* Prints the data set
*/
LIB4NEURO_API void print_data();
/**
* Stores the DataSet object to the binary file
*/
LIB4NEURO_API void store_text(std::string &file_path);
};
#include "../Exception/Exceptions.h"
namespace lib4neuro {
/**
* Class representing data, which can be used for training
* and testing purposes.
*/
class DataSet {
private:
/**
* Number of elements in the data set
*/
size_t n_elements = 0;
/**
* Dimension of the input
*/
size_t input_dim = 0;
/**
* Dimension of the output
*/
size_t output_dim = 0;
/**
* Stored data in the format of pairs of corresponding
* input and output vectors
*/
std::vector<std::pair<std::vector<double>, std::vector<double>>> data;
template<class T>
std::vector<std::vector<T>> cartesian_product(const std::vector<std::vector<T>> *v);
public:
/**
* Struct used to access private properties from
* the serialization function
*/
struct access;
/**
* Constructor for an empty DataSet
*/
LIB4NEURO_API DataSet();
/**
* Constructor reading data from the file
* @param file_path Path to the file with stored data set
*/
LIB4NEURO_API DataSet(std::string file_path);
/**
* Constructor accepting data vector
* @param data_ptr Pointer to the vector containing data
*/
LIB4NEURO_API DataSet(std::vector<std::pair<std::vector<double>, std::vector<double>>> *data_ptr);
/**
* Creates a new data set with input values equidistantly positioned
* over the certain interval and the output value
* being constant
*
* Both input and output are 1-dimensional
*
* @todo add bounds as vectors for multi-dimensional data-sets
*
* @param lower_bound Lower bound of the input data interval
* @param upper_bound Upper bound of the input data interval
* @param size Number of input-output pairs generated
* @param output Constant output value
*/
LIB4NEURO_API DataSet(double lower_bound, double upper_bound, unsigned int size, double output);
/**
*
* @param bounds
* @param no_elems_in_one_dim
* @param output_func
* @param output_dim
*/
LIB4NEURO_API DataSet(std::vector<double> &bounds, unsigned int no_elems_in_one_dim,
std::vector<double> (*output_func)(std::vector<double> &), unsigned int output_dim);
/**
* Getter for number of elements
* @return Number of elements in the data set
*/
LIB4NEURO_API size_t get_n_elements();
/**
* Returns the input dimension
* @return Input dimension
*/
LIB4NEURO_API size_t get_input_dim();
/**
* Return the output dimension
* @return Output dimension
*/
LIB4NEURO_API size_t get_output_dim();
/**
* Getter for the data structure
* @return Vector of data
*/
LIB4NEURO_API std::vector<std::pair<std::vector<double>, std::vector<double>>> *get_data();
/**
* Adds a new pair of data to the data set
* @param inputs Vector of input data
* @param outputs Vector of output data corresponding to the input data
*/
LIB4NEURO_API void add_data_pair(std::vector<double> &inputs, std::vector<double> &outputs);
//TODO expand method to generate multiple data types - chebyshev etc.
/**
* Adds a new data with input values equidistantly positioned
* over the certain interval and the output value
* being constant
*
* Both input and output are 1-dimensional
*
* @param lower_bound Lower bound of the input data interval
* @param upper_bound Upper bound of the input data interval
* @param size Number of input-output pairs generated
* @param output Constant output value
*/
LIB4NEURO_API void add_isotropic_data(double lower_bound, double upper_bound, unsigned int size, double output);
/**
* Adds a new data with input values equidistantly positioned
* over the certain interval and the output value
* being constant
*
* Input can have arbitrary many dimensions,
* output can be an arbitrary function
*
* @param bounds Odd values are lower bounds and even values are corresponding upper bounds
* @param size Number of input-output pairs generated
* @param output_func Function determining output value
*/
LIB4NEURO_API void add_isotropic_data(std::vector<double> &bounds, unsigned int no_elems_in_one_dim,
std::vector<double> (*output_func)(std::vector<double> &));
//TODO Chebyshev - ch. interpolation points, i-th point = cos(i*alpha) from 0 to pi
/**
* Prints the data set
*/
LIB4NEURO_API void print_data();
/**
* Stores the DataSet object to the binary file
*/
LIB4NEURO_API void store_text(std::string &file_path);
};
}
#endif //INC_4NEURO_DATASET_H
//
// Created by martin on 7/13/18.
//
#ifndef INC_4NEURO_DATASET_H
#define INC_4NEURO_DATASET_H
#include <iostream>
#include <fstream>
#include <utility>
#include <vector>
#include <string>
#include <functional>
#include "../settings.h"
#include "../Exception/Exceptions.h"
namespace lib4neuro {
/**
* Class representing data, which can be used for training
* and testing purposes.
*/
class DataSet {
private:
/**
* Number of elements in the data set
*/
size_t n_elements;
/**
* Dimension of the input
*/
size_t input_dim = 0;
/**
* Dimension of the output
*/
size_t output_dim = 0;
/**
* Stored data in the format of pairs of corresponding
* input and output vectors
*/
std::vector<std::pair<std::vector<double>, std::vector<double>>> data;
template<class T>
std::vector<std::vector<T>> cartesian_product(const std::vector<std::vector<T>> *v);
public:
/**
* Struct used to access private properties from
* the serialization function
*/
struct access;
/**
* Constructor reading data from the file
* @param file_path Path to the file with stored data set
*/
LIB4NEURO_API DataSet(std::string file_path);
<<<<<<< HEAD
=======
LIB4NEURO_API DataSet();
>>>>>>> 5fd0f3dcf535edfc3e3f4dd7b4cb256f2e95e8fe
/**
* Constructor accepting data vector
* @param data_ptr Pointer to the vector containing data
*/
LIB4NEURO_API DataSet(std::vector<std::pair<std::vector<double>, std::vector<double>>> *data_ptr);
/**
* Creates a new data set with input values equidistantly positioned
* over the certain interval and the output value
* being constant
*
* Both input and output are 1-dimensional
*
* @todo add bounds as vectors for multi-dimensional data-sets
*
* @param lower_bound Lower bound of the input data interval
* @param upper_bound Upper bound of the input data interval
* @param size Number of input-output pairs generated
* @param output Constant output value
*/
LIB4NEURO_API DataSet(double lower_bound, double upper_bound, unsigned int size, double output);
/**
*
* @param bounds
* @param no_elems_in_one_dim
* @param output_func
* @param output_dim
*/
LIB4NEURO_API DataSet(std::vector<double> &bounds, unsigned int no_elems_in_one_dim,
std::vector<double> (*output_func)(std::vector<double> &), unsigned int output_dim);
/**
* Getter for number of elements
* @return Number of elements in the data set
*/
LIB4NEURO_API size_t get_n_elements();
/**
* Returns the input dimension
* @return Input dimension
*/
LIB4NEURO_API size_t get_input_dim();
/**
* Return the output dimension
* @return Output dimension
*/
LIB4NEURO_API size_t get_output_dim();
/**
* Getter for the data structure
* @return Vector of data
*/
LIB4NEURO_API std::vector<std::pair<std::vector<double>, std::vector<double>>> *get_data();
/**
* Adds a new pair of data to the data set
* @param inputs Vector of input data
* @param outputs Vector of output data corresponding to the input data
*/
LIB4NEURO_API void add_data_pair(std::vector<double> &inputs, std::vector<double> &outputs);
//TODO expand method to generate multiple data types - chebyshev etc.
/**
* Adds a new data with input values equidistantly positioned
* over the certain interval and the output value
* being constant
*
* Both input and output are 1-dimensional
*
* @param lower_bound Lower bound of the input data interval
* @param upper_bound Upper bound of the input data interval
* @param size Number of input-output pairs generated
* @param output Constant output value
*/
LIB4NEURO_API void add_isotropic_data(double lower_bound, double upper_bound, unsigned int size, double output);
/**
* Adds a new data with input values equidistantly positioned
* over the certain interval and the output value
* being constant
*
* Input can have arbitrary many dimensions,
* output can be an arbitrary function
*
* @param bounds Odd values are lower bounds and even values are corresponding upper bounds
* @param size Number of input-output pairs generated
* @param output_func Function determining output value
*/
LIB4NEURO_API void add_isotropic_data(std::vector<double> &bounds, unsigned int no_elems_in_one_dim,
std::vector<double> (*output_func)(std::vector<double> &));
//TODO Chebyshev - ch. interpolation points, i-th point = cos(i*alpha) from 0 to pi
/**
* Prints the data set
*/
LIB4NEURO_API void print_data();
/**
* Stores the DataSet object to the binary file
*/
LIB4NEURO_API void store_text(std::string &file_path);
};
}
#endif //INC_4NEURO_DATASET_H
......@@ -14,15 +14,17 @@
#include "DataSet.h"
struct DataSet :: access {
template <class Archive>
static void serialize(Archive &ar, DataSet& ds, const unsigned int version) {
ar & ds.n_elements;
ar & ds.input_dim;
ar & ds.output_dim;
ar & ds.data;
}
};
namespace lib4neuro {
struct DataSet::access {
template<class Archive>
static void serialize(Archive &ar, DataSet &ds, const unsigned int version) {
ar & ds.n_elements;
ar & ds.input_dim;
ar & ds.output_dim;
ar & ds.data;
}
};
}
namespace boost {
namespace serialization {
......@@ -35,9 +37,9 @@ namespace boost {
* @param version Boost parameter - filled automatically during serialization!
*/
template<class Archive>
void serialize(Archive & ar, DataSet & ds, const unsigned int version)
void serialize(Archive & ar, lib4neuro::DataSet & ds, const unsigned int version)
{
DataSet::access::serialize(ar, ds, version);
lib4neuro::DataSet::access::serialize(ar, ds, version);
}
} // namespace serialization
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment