Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
lib4neuro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Container Registry
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
MolDyn
lib4neuro
Commits
c2680dbd
Commit
c2680dbd
authored
5 years ago
by
kra568
Browse files
Options
Downloads
Plain Diff
[FIX] 4neuro.h and merge confilcts
parents
1828b391
8466e108
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
src/Network/NeuralNetwork.cpp
+15
-7
15 additions, 7 deletions
src/Network/NeuralNetwork.cpp
src/examples/acsf2.cpp
+4
-4
4 additions, 4 deletions
src/examples/acsf2.cpp
src/examples/dev_sandbox.cpp
+146
-69
146 additions, 69 deletions
src/examples/dev_sandbox.cpp
with
165 additions
and
80 deletions
src/Network/NeuralNetwork.cpp
+
15
−
7
View file @
c2680dbd
...
@@ -2,12 +2,11 @@
...
@@ -2,12 +2,11 @@
* DESCRIPTION OF THE FILE
* DESCRIPTION OF THE FILE
*
*
* @author Michal Kravčenko
* @author Michal Kravčenko
* @date 13.6.18 -
* @date 13.6.18 -
*/
*/
#include
<iostream>
#include
<iostream>
#include
<4neuro.h>
#include
"../NetConnection/ConnectionFunctionConstant.h"
#include
<NetConnection/ConnectionFunctionConstant.h>
#include
"message.h"
#include
"message.h"
#include
"NeuralNetwork.h"
#include
"NeuralNetwork.h"
...
@@ -271,9 +270,9 @@ namespace lib4neuro {
...
@@ -271,9 +270,9 @@ namespace lib4neuro {
double
potential
,
bias
;
double
potential
,
bias
;
int
bias_idx
;
int
bias_idx
;
this
->
copy_parameter_space
(
custom_weights_and_biases
);
this
->
copy_parameter_space
(
custom_weights_and_biases
);
// TODO rewrite, so the original parameters are not edited!
this
->
analyze_layer_structure
();
this
->
analyze_layer_structure
(
);
/* reset of the output and the neuron potentials */
/* reset of the output and the neuron potentials */
::
std
::
fill
(
output
.
begin
(),
::
std
::
fill
(
output
.
begin
(),
...
@@ -292,6 +291,7 @@ namespace lib4neuro {
...
@@ -292,6 +291,7 @@ namespace lib4neuro {
for
(
auto
layer
:
this
->
neuron_layers_feedforward
)
{
for
(
auto
layer
:
this
->
neuron_layers_feedforward
)
{
/* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */
/* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */
//#pragma omp parallel for collapse(3)
for
(
auto
si
:
*
layer
)
{
for
(
auto
si
:
*
layer
)
{
bias
=
0.0
;
bias
=
0.0
;
bias_idx
=
this
->
neuron_bias_indices
.
at
(
si
);
bias_idx
=
this
->
neuron_bias_indices
.
at
(
si
);
...
@@ -985,7 +985,7 @@ namespace lib4neuro {
...
@@ -985,7 +985,7 @@ namespace lib4neuro {
for
(
auto
ind
:
previous_layer_neuron_indices
)
{
for
(
auto
ind
:
previous_layer_neuron_indices
)
{
this
->
add_connection_simple
(
ind
,
this
->
add_connection_simple
(
ind
,
neuron_id
,
neuron_id
,
l
4n
::
SIMPLE_CONNECTION_TYPE
::
NEXT_WEIGHT
);
l
ib4neuro
::
SIMPLE_CONNECTION_TYPE
::
NEXT_WEIGHT
);
}
}
}
}
}
}
...
@@ -1007,7 +1007,7 @@ namespace lib4neuro {
...
@@ -1007,7 +1007,7 @@ namespace lib4neuro {
for
(
auto
ind
:
previous_layer_neuron_indices
)
{
for
(
auto
ind
:
previous_layer_neuron_indices
)
{
this
->
add_connection_simple
(
ind
,
this
->
add_connection_simple
(
ind
,
neuron_id
,
neuron_id
,
l
4n
::
SIMPLE_CONNECTION_TYPE
::
NEXT_WEIGHT
);
l
ib4neuro
::
SIMPLE_CONNECTION_TYPE
::
NEXT_WEIGHT
);
}
}
}
}
...
@@ -1057,5 +1057,13 @@ namespace lib4neuro {
...
@@ -1057,5 +1057,13 @@ namespace lib4neuro {
return
std
::
make_pair
(
*
std
::
min_element
(
this
->
connection_weights
.
begin
(),
this
->
connection_weights
.
end
()),
return
std
::
make_pair
(
*
std
::
min_element
(
this
->
connection_weights
.
begin
(),
this
->
connection_weights
.
end
()),
*
std
::
max_element
(
this
->
connection_weights
.
begin
(),
this
->
connection_weights
.
end
()));
*
std
::
max_element
(
this
->
connection_weights
.
begin
(),
this
->
connection_weights
.
end
()));
}
}
size_t
NeuralNetwork
::
get_input_neurons_number
()
{
return
this
->
input_neuron_indices
.
size
();
}
size_t
NeuralNetwork
::
get_output_neurons_number
()
{
return
this
->
output_neuron_indices
.
size
();
}
}
}
This diff is collapsed.
Click to expand it.
src/examples/acsf2.cpp
+
4
−
4
View file @
c2680dbd
...
@@ -3,7 +3,7 @@
...
@@ -3,7 +3,7 @@
//
//
#include
<exception>
#include
<exception>
#include
<4neuro.h>
#include
<4neuro
_public
.h>
void
optimize_via_particle_swarm
(
l4n
::
NeuralNetwork
&
net
,
void
optimize_via_particle_swarm
(
l4n
::
NeuralNetwork
&
net
,
l4n
::
ErrorFunction
&
ef
)
{
l4n
::
ErrorFunction
&
ef
)
{
...
@@ -82,7 +82,7 @@ double optimize_via_LBMQ(l4n::NeuralNetwork& net,
...
@@ -82,7 +82,7 @@ double optimize_via_LBMQ(l4n::NeuralNetwork& net,
double
tolerance
=
1e-6
;
double
tolerance
=
1e-6
;
double
tolerance_gradient
=
tolerance
;
double
tolerance_gradient
=
tolerance
;
double
tolerance_parameters
=
tolerance
;
double
tolerance_parameters
=
tolerance
;
std
::
cout
std
::
cout
<<
"***********************************************************************************************************************"
<<
"***********************************************************************************************************************"
<<
std
::
endl
;
<<
std
::
endl
;
...
@@ -189,7 +189,7 @@ int main() {
...
@@ -189,7 +189,7 @@ int main() {
// optimize_via_particle_swarm(net, mse);
// optimize_via_particle_swarm(net, mse);
double
err1
=
optimize_via_LBMQ
(
net
,
mse
);
double
err1
=
optimize_via_LBMQ
(
net
,
mse
);
double
err2
=
optimize_via_gradient_descent
(
net
,
mse
);
double
err2
=
optimize_via_gradient_descent
(
net
,
mse
);
if
(
err2
>
0.00001
)
{
if
(
err2
>
0.00001
)
{
throw
std
::
runtime_error
(
"Training was incorrect!"
);
throw
std
::
runtime_error
(
"Training was incorrect!"
);
}
}
...
@@ -213,4 +213,4 @@ int main() {
...
@@ -213,4 +213,4 @@ int main() {
}
}
return
0
;
return
0
;
}
}
\ No newline at end of file
This diff is collapsed.
Click to expand it.
src/examples/dev_sandbox.cpp
+
146
−
69
View file @
c2680dbd
//
//
// Created by martin on 20.08.19.
// Created by martin on 20.08.19.
//
//
#include
<exception>
#include
<4neuro.h>
#define ARMA_ALLOW_FAKE_GCC
#include
<4neuro_public.h>
#include
"../mpi_wrapper.h"
void
optimize_via_particle_swarm
(
l4n
::
NeuralNetwork
&
net
,
void
optimize_via_particle_swarm
(
l4n
::
NeuralNetwork
&
net
,
l4n
::
ErrorFunction
&
ef
)
{
l4n
::
ErrorFunction
&
ef
)
{
...
@@ -54,18 +56,23 @@ void optimize_via_particle_swarm(l4n::NeuralNetwork& net,
...
@@ -54,18 +56,23 @@ void optimize_via_particle_swarm(l4n::NeuralNetwork& net,
}
}
double
optimize_via_gradient_descent
(
l4n
::
NeuralNetwork
&
net
,
double
optimize_via_gradient_descent
(
l4n
::
NeuralNetwork
&
net
,
l4n
::
ErrorFunction
&
ef
)
{
l4n
::
ErrorFunction
&
ef
)
{
std
::
cout
std
::
cout
<<
"***********************************************************************************************************************"
<<
"***********************************************************************************************************************"
<<
std
::
endl
;
<<
std
::
endl
;
l4n
::
GradientDescentBB
gd
(
1e-6
,
1000
,
60000
);
gd
.
optimize
(
ef
);
for
(
double
tol
=
1e-1
;
tol
>
1e-6
;
tol
*=
1e-1
){
l4n
::
GradientDescentBB
gd
(
tol
,
500
,
500
);
l4n
::
LazyLearning
lazy_wrapper
(
gd
,
tol
);
lazy_wrapper
.
optimize
(
ef
);
}
// gd.optimize(ef);
net
.
copy_parameter_space
(
gd
.
get_parameters
());
//
net.copy_parameter_space(gd.get_parameters());
/* ERROR CALCULATION */
/* ERROR CALCULATION */
double
err
=
ef
.
eval
(
nullptr
);
double
err
=
ef
.
eval
(
nullptr
);
...
@@ -76,65 +83,93 @@ double optimize_via_gradient_descent(l4n::NeuralNetwork& net,
...
@@ -76,65 +83,93 @@ double optimize_via_gradient_descent(l4n::NeuralNetwork& net,
}
}
double
optimize_via_LBMQ
(
l4n
::
NeuralNetwork
&
net
,
double
optimize_via_LBMQ
(
l4n
::
NeuralNetwork
&
net
,
l4n
::
ErrorFunction
&
ef
)
{
l4n
::
ErrorFunction
&
ef
)
{
size_t
max_iterations
=
100
00
;
size_t
max_iterations
=
2
00
;
size_t
batch_size
=
0
;
size_t
batch_size
=
0
;
double
tolerance
=
1e-
6
;
double
tolerance
=
1e-
4
;
double
tolerance_gradient
=
tolerance
;
double
tolerance_gradient
=
tolerance
;
double
tolerance_parameters
=
tolerance
;
double
tolerance_parameters
=
tolerance
;
std
::
cout
std
::
cout
<<
"***********************************************************************************************************************"
<<
"***********************************************************************************************************************"
<<
std
::
endl
;
<<
std
::
endl
;
l4n
::
LevenbergMarquardt
lm
(
// for( double tol = 1; tol > tolerance; tol *= 0.5 ){
max_iterations
,
l4n
::
LevenbergMarquardt
lm
(
batch_size
,
max_iterations
,
tolerance
,
batch_size
,
tolerance_gradient
,
tolerance
,
tolerance_parameters
tolerance
,
);
tolerance
);
lm
.
optimize
(
ef
);
l4n
::
LazyLearning
lazy_wrapper
(
lm
,
tolerance
);
lazy_wrapper
.
optimize
(
ef
);
// lm.optimize(ef);
// break;
// }
net
.
copy_parameter_space
(
lm
.
get_parameters
());
// lm.optimize( ef );
// net.copy_parameter_space(lm.get_parameters());
/* ERROR CALCULATION */
/* ERROR CALCULATION */
double
err
=
ef
.
eval
(
nullptr
);
double
err
=
ef
.
eval
(
nullptr
);
// std::cout << "Run finished! Error of the network[Levenberg-Marquardt]: " << err << std::endl;
// std::cout << "Run finished! Error of the network[Levenberg-Marquardt]: " << err << std::endl;
/* Just for validation test purposes - NOT necessary for the example to work! */
/* Just for validation test purposes - NOT necessary for the example to work! */
return
err
;
return
err
;
}
}
int
main
()
{
double
optimize_via_NelderMead
(
l4n
::
NeuralNetwork
&
net
,
l4n
::
ErrorFunction
&
ef
)
{
l4n
::
NelderMead
nm
(
500
,
200
);
try
{
nm
.
optimize
(
ef
);
net
.
copy_parameter_space
(
nm
.
get_parameters
());
/* Specify cutoff functions */
/* ERROR CALCULATION */
// l4n::CutoffFunction1 cutoff1(10.1);
double
err
=
ef
.
eval
(
nullptr
);
l4n
::
CutoffFunction2
cutoff1
(
8
);
std
::
cout
<<
"Run finished! Error of the network[Nelder-Mead]: "
<<
err
<<
std
::
endl
;
//l4n::CutoffFunction2 cutoff2(25);
// l4n::CutoffFunction2 cutoff2(15.2);
// l4n::CutoffFunction2 cutoff4(10.3);
// l4n::CutoffFunction2 cutoff5(12.9);
// l4n::CutoffFunction2 cutoff6(11);
/* Specify symmetry functions */
/* Just for validation test purposes - NOT necessary for the example to work! */
// l4n::G1 sym_f1(&cutoff1);
return
err
;
l4n
::
G2
sym_f2
(
&
cutoff1
,
2.09
,
0.8
);
l4n
::
G2
sym_f3
(
&
cutoff1
,
0.01
,
0.04
);
// l4n::G2 sym_f4(&cutoff2, 0.02, 0.04);
// l4n::G2 sym_f5(&cutoff2, 2.09, 0.04);
}
int
main
()
{
MPI_INIT
try
{
// l4n::G3 sym_f4(&cutoff4, 0.3);
/* Specify cutoff functions */
// l4n::G4 sym_f5(&cutoff5, 0.05, true, 0.05);
l4n
::
CutoffFunction2
cutoff2
(
8
);
// l4n::G4 sym_f6(&cutoff5, 0.05, false, 0.05);
// l4n::G4 sym_f7(&cutoff6, 0.5, true, 0.05);
// l4n::G4 sym_f8(&cutoff6, 0.5, false, 0.05);
std
::
vector
<
l4n
::
SymmetryFunction
*>
helium_sym_funcs
=
{
&
sym_f2
,
&
sym_f3
};
//, &sym_f4, &sym_f5}; //, &sym_f6, &sym_f7, &sym_f8};
/* Specify symmetry functions */
l4n
::
G2
sym_f1
(
&
cutoff2
,
0.00
,
0
);
l4n
::
G2
sym_f2
(
&
cutoff2
,
0.02
,
1
);
l4n
::
G2
sym_f3
(
&
cutoff2
,
0.04
,
2
);
l4n
::
G2
sym_f4
(
&
cutoff2
,
0.06
,
3
);
l4n
::
G2
sym_f5
(
&
cutoff2
,
0.08
,
4
);
l4n
::
G2
sym_f6
(
&
cutoff2
,
0.10
,
5
);
l4n
::
G2
sym_f7
(
&
cutoff2
,
0.12
,
6
);
l4n
::
G2
sym_f8
(
&
cutoff2
,
0.14
,
7
);
l4n
::
G2
sym_f9
(
&
cutoff2
,
0.16
,
8
);
l4n
::
G5
sym_f10
(
&
cutoff2
,
0
,
-
1
,
0
);
l4n
::
G5
sym_f11
(
&
cutoff2
,
0
,
-
1
,
3
);
l4n
::
G5
sym_f12
(
&
cutoff2
,
0
,
-
1
,
6
);
l4n
::
G5
sym_f13
(
&
cutoff2
,
0
,
-
1
,
9
);
l4n
::
G5
sym_f14
(
&
cutoff2
,
0
,
-
1
,
12
);
l4n
::
G5
sym_f15
(
&
cutoff2
,
0
,
-
1
,
15
);
std
::
vector
<
l4n
::
SymmetryFunction
*>
helium_sym_funcs
=
{
&
sym_f1
,
&
sym_f2
,
&
sym_f3
,
&
sym_f4
,
&
sym_f5
,
&
sym_f6
};
l4n
::
Element
helium
=
l4n
::
Element
(
"He"
,
l4n
::
Element
helium
=
l4n
::
Element
(
"He"
,
helium_sym_funcs
);
helium_sym_funcs
);
...
@@ -142,46 +177,81 @@ int main() {
...
@@ -142,46 +177,81 @@ int main() {
elements
[
l4n
::
ELEMENT_SYMBOL
::
He
]
=
&
helium
;
elements
[
l4n
::
ELEMENT_SYMBOL
::
He
]
=
&
helium
;
/* Read data */
/* Read data */
l4n
::
XYZReader
reader
(
"../../data/HE4+T0.xyz"
,
true
);
l4n
::
XYZReader
reader
(
"../../data/HE4+T0
_000200
.xyz"
,
true
);
reader
.
read
();
reader
.
read
();
std
::
cout
<<
"Finished reading data"
<<
std
::
endl
;
std
::
cout
<<
"Finished reading data"
<<
std
::
endl
;
std
::
shared_ptr
<
l4n
::
DataSet
>
ds
=
reader
.
get_acsf_data_set
(
elements
);
std
::
shared_ptr
<
l4n
::
DataSet
>
ds
=
reader
.
get_acsf_data_set
(
elements
);
// ds->print_data();
/* Create a neural network */
/* Create a neural network */
std
::
unordered_map
<
l4n
::
ELEMENT_SYMBOL
,
std
::
vector
<
unsigned
int
>>
n_hidden_neurons
;
std
::
unordered_map
<
l4n
::
ELEMENT_SYMBOL
,
std
::
vector
<
unsigned
int
>>
n_hidden_neurons
;
n_hidden_neurons
[
l4n
::
ELEMENT_SYMBOL
::
He
]
=
{
5
,
3
,
1
};
n_hidden_neurons
[
l4n
::
ELEMENT_SYMBOL
::
He
]
=
{
2
5
,
15
,
1
};
std
::
unordered_map
<
l4n
::
ELEMENT_SYMBOL
,
std
::
vector
<
l4n
::
NEURON_TYPE
>>
type_hidden_neurons
;
std
::
unordered_map
<
l4n
::
ELEMENT_SYMBOL
,
std
::
vector
<
l4n
::
NEURON_TYPE
>>
type_hidden_neurons
;
for
(
int
i
=
0
;
i
<
n_hidden_neurons
[
l4n
::
ELEMENT_SYMBOL
::
He
].
size
()
-
1
;
++
i
){
type_hidden_neurons
[
l4n
::
ELEMENT_SYMBOL
::
He
]
=
{
l4n
::
NEURON_TYPE
::
LOGISTIC
,
l4n
::
NEURON_TYPE
::
LOGISTIC
,
l4n
::
NEURON_TYPE
::
LINEAR
};
type_hidden_neurons
[
l4n
::
ELEMENT_SYMBOL
::
He
].
push_back
(
l4n
::
NEURON_TYPE
::
LOGISTIC
);
}
type_hidden_neurons
[
l4n
::
ELEMENT_SYMBOL
::
He
].
push_back
(
l4n
::
NEURON_TYPE
::
LINEAR
);
l4n
::
ACSFNeuralNetwork
net
(
elements
,
*
reader
.
get_element_list
(),
reader
.
contains_charge
(),
n_hidden_neurons
,
type_hidden_neurons
);
l4n
::
ACSFNeuralNetwork
net
(
elements
,
*
reader
.
get_element_list
(),
reader
.
contains_charge
(),
n_hidden_neurons
,
type_hidden_neurons
);
l4n
::
MSE
mse
(
&
net
,
ds
.
get
());
l4n
::
MSE
mse
(
&
net
,
ds
.
get
(),
false
);
net
.
randomize_parameters
();
net
.
randomize_parameters
();
// optimize_via_particle_swarm(net, mse);
double
err1
=
optimize_via_LBMQ
(
net
,
mse
);
for
(
size_t
i
=
0
;
i
<
ds
->
get_data
()
->
at
(
0
).
first
.
size
();
i
++
)
{
double
err2
=
optimize_via_gradient_descent
(
net
,
mse
);
std
::
cout
<<
ds
->
get_data
()
->
at
(
0
).
first
.
at
(
i
)
<<
" "
;
if
(
i
%
2
==
1
)
{
std
::
cout
<<
"Weights: "
<<
net
.
get_min_max_weight
().
first
<<
" "
<<
net
.
get_min_max_weight
().
second
<<
std
::
endl
;
std
::
cout
<<
std
::
endl
;
}
}
std
::
cout
<<
"----"
<<
std
::
endl
;
l4n
::
ACSFParametersOptimizer
param_optim
(
&
mse
,
&
reader
);
std
::
vector
<
l4n
::
SYMMETRY_FUNCTION_PARAMETER
>
fitted_params
=
{
l4n
::
SYMMETRY_FUNCTION_PARAMETER
::
EXTENSION
,
l4n
::
SYMMETRY_FUNCTION_PARAMETER
::
SHIFT_MAX
,
l4n
::
SYMMETRY_FUNCTION_PARAMETER
::
SHIFT
,
l4n
::
SYMMETRY_FUNCTION_PARAMETER
::
ANGULAR_RESOLUTION
};
// l4n::SYMMETRY_FUNCTION_PARAMETER::PERIOD_LENGTH};
// param_optim.fit_ACSF_parameters(fitted_params,
// false,
// 50,
// 10,
// 1e-5,
// 0.98,
// 0.085,
// 1e-6);
for
(
size_t
i
=
0
;
i
<
mse
.
get_dataset
()
->
get_data
()
->
at
(
0
).
first
.
size
();
i
++
)
{
std
::
cout
<<
mse
.
get_dataset
()
->
get_data
()
->
at
(
0
).
first
.
at
(
i
)
<<
" "
;
if
(
i
%
2
==
1
)
{
std
::
cout
<<
std
::
endl
;
}
}
std
::
cout
<<
"----"
<<
std
::
endl
;
// optimize_via_particle_swarm(net, mse);
//
//
//// optimize_via_NelderMead(net, mse);
//
double
err1
=
optimize_via_LBMQ
(
net
,
mse
);
// double err2 = optimize_via_gradient_descent(net, mse);
// std::cout << "Weights: " << net.get_min_max_weight().first << " " << net.get_min_max_weight().second << std::endl;
/* Print fit comparison with real data */
/* Print fit comparison with real data */
std
::
vector
<
double
>
output
;
std
::
vector
<
double
>
output
;
output
.
resize
(
1
);
output
.
resize
(
1
);
for
(
auto
e
:
*
ds
->
get_data
())
{
for
(
auto
e
:
*
mse
.
get_dataset
()
->
get_data
())
{
for
(
unsigned
in
t
i
=
0
;
i
<
e
.
first
.
size
();
i
++
)
{
//
for(
size_
t i = 0; i < e.first.size(); i++) {
std
::
cout
<<
e
.
first
.
at
(
i
)
<<
" "
;
//
std::cout << e.first.at(i) << " ";
if
(
i
%
2
==
1
)
{
//
if(i % 2 == 1) {
std
::
cout
<<
std
::
endl
;
//
std::cout << std::endl;
}
//
}
}
//
}
std
::
cout
<<
"OUTS (DS, predict): "
<<
e
.
second
.
at
(
0
)
<<
" "
;
std
::
cout
<<
"OUTS (DS, predict): "
<<
e
.
second
.
at
(
0
)
<<
" "
;
net
.
eval_single
(
e
.
first
,
output
);
net
.
eval_single
(
e
.
first
,
output
);
std
::
cout
<<
output
.
at
(
0
)
<<
std
::
endl
;
std
::
cout
<<
output
.
at
(
0
)
<<
std
::
endl
;
...
@@ -192,5 +262,12 @@ int main() {
...
@@ -192,5 +262,12 @@ int main() {
exit
(
EXIT_FAILURE
);
exit
(
EXIT_FAILURE
);
}
}
// arma::Mat<double> m = {{1,2,3}, {4,5,6}, {7,8,9}};
// arma::Col<double> v = arma::conv_to<std::vector<double>(m);
// std::cout << arma::stddev(m) << std::endl;
MPI_FINISH
return
0
;
return
0
;
}
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment