Skip to content
Snippets Groups Projects
Commit cd300571 authored by Michal Kravcenko's avatar Michal Kravcenko
Browse files

changed IDifferentiable interface to include getter providing neurons with...

changed IDifferentiable interface to include getter providing neurons with activation function based on derivatives of the parental activation function
added neurons representing 1st and 2nd derivatives of the logistic neuron
parent e6212358
No related branches found
No related tags found
No related merge requests found
......@@ -13,7 +13,7 @@ add_library(4neuro SHARED
NetConnection/ConnectionWeightIdentity.cpp
LearningMethods/ParticleSwarm.cpp
DataSet/DataSet.cpp
ErrorFunction/ErrorFunctions.cpp Network/NeuralNetworkSum.cpp Network/NeuralNetworkSum.h)
ErrorFunction/ErrorFunctions.cpp Network/NeuralNetworkSum.cpp Network/NeuralNetworkSum.h Solvers/PDESolver.cpp Solvers/PDESolver.h Neuron/NeuronLogistic_d1.cpp Neuron/NeuronLogistic_d1.h Neuron/NeuronLogistic_d2.cpp Neuron/NeuronLogistic_d2.h)
target_link_libraries(4neuro boost_serialization)
......
......@@ -124,6 +124,11 @@ void Neuron::set_idx(size_t value) {
this->neural_net_index = value;
}
Neuron* IDifferentiable::get_derivative() {
return nullptr;
}
//template<class Archive>
//void Neuron::serialize(Archive & ar, const unsigned int version) {
// ar << this->potential;
......
......@@ -233,8 +233,9 @@ public:
/**
* Class serving as an interface providing 'activation_function_get_partial_derivative'
* and 'activation_function_get_derivative' methods.
* Class serving as an interface providing 'activation_function_eval_partial_derivative',
* 'activation_function_eval_derivative', 'get_partial_derivative' and
* 'get_derivative' methods.
*/
class IDifferentiable {
/**
......@@ -244,13 +245,20 @@ class IDifferentiable {
* @return Partial derivative of the activation function according to the
* 'param_idx'-th parameter
*/
virtual double activation_function_get_partial_derivative(int param_idx) = 0;
virtual double activation_function_eval_partial_derivative(int param_idx) = 0;
/**
* Calculates the derivative with respect to the argument, ie the 'potential'
* @return f'(x), where 'f(x)' is the activation function and 'x' = 'potential'
*/
virtual double activation_function_get_derivative( ) = 0;
virtual double activation_function_eval_derivative( ) = 0;
/**
* Returns a Neuron pointer object with activation function being the partial derivative of
* the activation function of this Neuron object with respect to the argument, i.e. 'potential'
* @return
*/
virtual Neuron* get_derivative( );
}; /* end of IDifferentiable class */
#endif /* NEURON_H_ */
\ No newline at end of file
......@@ -35,7 +35,7 @@ void NeuronLinear::activate( ) {
}
double NeuronLinear::activation_function_get_partial_derivative(int param_idx) {
double NeuronLinear::activation_function_eval_partial_derivative(int param_idx) {
if(param_idx == 0){
return 1.0;
......@@ -48,12 +48,21 @@ double NeuronLinear::activation_function_get_partial_derivative(int param_idx) {
return 0.0;
}
double NeuronLinear::activation_function_get_derivative( ) {
double NeuronLinear::activation_function_eval_derivative( ) {
double b = this->activation_function_parameters[1];
return b;
}
Neuron* NeuronLinear::get_derivative() {
NeuronLinear* output = nullptr;
//derivative according to 'x'
output = new NeuronLinear(this->activation_function_parameters[1], 0.0);
return output;
}
//template<class Archive>
//void NeuronLinear::serialize(Archive & ar, const unsigned int version) {
// ar & boost::serialization::base_object<Neuron>(*this);
......
......@@ -45,19 +45,26 @@ public:
/**
* Calculates the partial derivative of the activation function
* f(x) = b*x + a
* f(x) = b*x + a at point x
* @param[in] param_idx Index of the parameter to calculate derivative of
* @return Partial derivative of the activation function according to the
* 'param_idx'-th parameter. For 'param_idx'=0 returns 1, for 'param_idx=1'
* return 'x' and otherwise returns 0.
*/
double activation_function_get_partial_derivative(int param_idx) override;
double activation_function_eval_partial_derivative(int param_idx) override;
/**
* Calculates d/dx of (b*x + a)
* Calculates d/dx of (b*x + a) at point x
* @return b
*/
double activation_function_get_derivative( ) override;
double activation_function_eval_derivative( ) override;
/**
* Returns a pointer to a Neuron with derivative as its activation function
* @return
*/
Neuron* get_derivative() override;
};
......
......@@ -33,13 +33,14 @@ void NeuronLogistic::activate( ) {
}
double NeuronLogistic::activation_function_get_partial_derivative(int param_idx ) {
double NeuronLogistic::activation_function_eval_partial_derivative(int param_idx ) {
double a = this->activation_function_parameters[0];
double b = this->activation_function_parameters[1];
double x = this->potential;
if(param_idx == 0){
//partial derivative according to parameter 'a'
double ex = std::pow(E, b - x);
double exa= -std::pow(ex + 1.0, -a);
......@@ -47,6 +48,7 @@ double NeuronLogistic::activation_function_get_partial_derivative(int param_idx
return exa * std::log(ex + 1.0);
}
else if(param_idx == 1){
//partial derivative according to parameter 'b'
/**
* TODO
* Could be write as activation_function_get_derivative() * -1
......@@ -61,7 +63,8 @@ double NeuronLogistic::activation_function_get_partial_derivative(int param_idx
}
double NeuronLogistic::activation_function_get_derivative( ) {
double NeuronLogistic::activation_function_eval_derivative( ) {
double a = this->activation_function_parameters[0];
double b = this->activation_function_parameters[1];
......@@ -72,4 +75,15 @@ double NeuronLogistic::activation_function_get_derivative( ) {
return a * ex * ex2;
}
Neuron* NeuronLogistic::get_derivative() {
NeuronLogistic_d1 *output = nullptr;
double a = this->activation_function_parameters[0];
double b = this->activation_function_parameters[1];
output = new NeuronLogistic_d1(a, b);
output->set_potential( this->potential );
return output;
}
\ No newline at end of file
......@@ -12,6 +12,7 @@
#include <cmath>
#include "Neuron.h"
#include "NeuronLogistic_d1.h"
#include "../constants.h"
class NeuronLogistic:public Neuron, public IDifferentiable {
......@@ -36,25 +37,29 @@ public:
explicit NeuronLogistic(double a = 0.0, double b = 0.0);
/**
* Evaluates '(1 + e^(-x + a))^(-b)' and stores the result into the 'state' property
* Evaluates '(1 + e^(-x + b))^(-a)' and stores the result into the 'state' property
*/
void activate( ) override;
/**
* Calculates the partial derivative of the activation function
* f(x) = (1 + e^(-x + a))^(-b)
* f(x) = (1 + e^(-x + b))^(-a)
* @param[in] param_idx Index of the parameter to calculate derivative of
* @return Partial derivative of the activation function according to the
* 'param_idx'-th parameter.
*/
double activation_function_get_partial_derivative(int param_idx) override;
double activation_function_eval_partial_derivative(int param_idx) override;
/**
* Calculates d/dx of (1 + e^(-x + a))^(-b)
* @return b * e^(a - x) * [e^(a - x) + 1]^(-b)
* Calculates d/dx of (1 + e^(-x + b))^(-a)
* @return a * e^(b - x) * [e^(b - x) + 1]^(-a)
*/
double activation_function_get_derivative( ) override;
double activation_function_eval_derivative( ) override;
/**
* Returns a pointer to a Neuron with derivative as its activation function
* @return
*/
Neuron* get_derivative() override;
};
......
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 22.7.18 -
*/
#include "NeuronLogistic_d1.h"
Neuron* NeuronLogistic_d1::get_copy( ){
NeuronLogistic_d1* output = new NeuronLogistic_d1( this->activation_function_parameters[0], this->activation_function_parameters[1]);
return output;
}
NeuronLogistic_d1::NeuronLogistic_d1(double a, double b) {
this->n_activation_function_parameters = 2;
this->activation_function_parameters = new double[2];
this->activation_function_parameters[0] = a;
this->activation_function_parameters[1] = b;
this->edges_in = new std::vector<Connection*>(0);
this->edges_out = new std::vector<Connection*>(0);
}
void NeuronLogistic_d1::activate( ) {
//a*e^(b - x)*(1 + e^(b - x))^(-1 - a)
double a = this->activation_function_parameters[0];
double b = this->activation_function_parameters[1];
double x = this->potential;
double ex = std::pow(E, b - x);
this->state = a * ex * std::pow(1.0 + ex, -a - 1.0);
}
double NeuronLogistic_d1::activation_function_eval_partial_derivative(int param_idx ) {
double a = this->activation_function_parameters[0];
double b = this->activation_function_parameters[1];
double x = this->potential;
if(param_idx == 0){
//partial derivative according to parameter 'a'
//e^(b - x) (1 + e^(b - x))^(-1 - a)[1 - a log(1 + e^(b - x))]
double ex = std::pow(E, b - x);
double ex2= std::pow(1.0 + ex, -1.0 - a);
return ex * ex2 * (1.0 - a * std::log(1.0 + ex));
}
else if(param_idx == 1){
//partial derivative according to parameter 'b'
//[(-1 - a) e^(b-x) (1 + e^(b - x))^(-1) + 1] * a e^(b - x) (1 + e^(b - x))^(-1 - a)
double ex = std::pow(E, b - x);
double ex2 = std::pow(ex + 1.0, -a - 1.0);
double ex3 = 1.0 / (1.0 + ex);
return a * ex * ex2 * (1.0 - (a + 1.0) * ex * ex3);
}
return 0.0;
}
double NeuronLogistic_d1::activation_function_eval_derivative() {
//[(1 + a) e^(b-x) (1 + e^(b - x))^(-1) - 1]a e^(b - x) (1 + e^(b - x))^(-1 - a)
double a = this->activation_function_parameters[0];
double b = this->activation_function_parameters[1];
double x = this->potential;
double ex = std::pow(E, b - x);
double ex2 = std::pow(ex + 1.0, -a - 1.0);
double ex3 = 1.0 / (1.0 + ex);
return -a * ex * ex2 * (1.0 - (a + 1.0) * ex * ex3);
}
Neuron* NeuronLogistic_d1::get_derivative() {
//[(1 + a) e^(b-x) (1 + e^(b - x))^(-1) - 1]a e^(b - x) (1 + e^(b - x))^(-1 - a)
NeuronLogistic_d2* output = nullptr;
double a = this->activation_function_parameters[0];
double b = this->activation_function_parameters[1];
output = new NeuronLogistic_d2(a, b);
return output;
}
\ No newline at end of file
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 22.7.18 -
*/
#ifndef INC_4NEURO_NEURONLOGISTIC_D1_H
#define INC_4NEURO_NEURONLOGISTIC_D1_H
#include <cmath>
#include "Neuron.h"
#include "NeuronLogistic_d2.h"
#include "../constants.h"
class NeuronLogistic_d1:public Neuron, public IDifferentiable {
friend class boost::serialization::access;
protected:
template<class Archive>
void serialize(Archive & ar, const unsigned int version){
//TODO separate implementation to NeuronLogistic_d1.cpp!
ar & boost::serialization::base_object<Neuron>(*this);
};
public:
Neuron* get_copy( );
/**
* Constructs the object of the Logistic neuron with activation function
* f(x) = a*e^(b - x)*(1 + e^(b - x))^(-1 - a)
* @param[in] a First coefficient, stored in activation_function_parameters[0]
* @param[in] b Second coefficient, stored in activation_function_parameters[1]
*/
explicit NeuronLogistic_d1(double a = 0.0, double b = 0.0);
/**
* Evaluates 'a*e^(b - x)*(1 + e^(b - x))^(-1 - a)' and stores the result into the 'state' property
*/
void activate( ) override;
/**
* Calculates the partial derivative of the activation function
* f(x) = a*e^(b - x)*(1 + e^(b - x))^(-1 - a)
* @param[in] param_idx Index of the parameter to calculate derivative of
* @return Partial derivative of the activation function according to the
* 'param_idx'-th parameter.
*/
double activation_function_eval_partial_derivative(int param_idx) override;
/**
* Calculates d/dx of [a*e^(b - x)*(1 + e^(b - x))^(-1 - a)]
* @return [[(1 + a) e^(b-x) (1 + e^(b - x))^(-1) - 1]a e^(b - x) (1 + e^(b - x))^(-1 - a)]
*/
double activation_function_eval_derivative( ) override;
/**
* Returns a pointer to a Neuron with derivative as its activation function
* @return
*/
Neuron* get_derivative() override;
};
#endif //INC_4NEURO_NEURONLOGISTIC_D1_H
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 22.7.18 -
*/
#include "NeuronLogistic_d2.h"
Neuron* NeuronLogistic_d2::get_copy( ){
NeuronLogistic_d2* output = new NeuronLogistic_d2( this->activation_function_parameters[0], this->activation_function_parameters[1]);
return output;
}
NeuronLogistic_d2::NeuronLogistic_d2(double a, double b) {
this->n_activation_function_parameters = 2;
this->activation_function_parameters = new double[2];
this->activation_function_parameters[0] = a;
this->activation_function_parameters[1] = b;
this->edges_in = new std::vector<Connection*>(0);
this->edges_out = new std::vector<Connection*>(0);
}
void NeuronLogistic_d2::activate( ) {
//[(1 + a) e^(b-x) (1 + e^(b - x))^(-1) - 1]a e^(b - x) (1 + e^(b - x))^(-1 - a)
double a = this->activation_function_parameters[0];
double b = this->activation_function_parameters[1];
double x = this->potential;
double ex = std::pow(E, b - x);
double ex2 = std::pow(ex + 1.0, -a - 1.0);
double ex3 = 1.0 / (1.0 + ex);
this->state = -a * ex * ex2 * (1.0 - (a + 1.0) * ex * ex3);
}
double NeuronLogistic_d2::activation_function_eval_partial_derivative(int param_idx ) {
double a = this->activation_function_parameters[0];
double b = this->activation_function_parameters[1];
double x = this->potential;
if(param_idx == 0){
//partial derivative according to parameter 'a'
//(e^b (e^(b - x) + 1)^(-a) (a^2 (-e^b) log(e^(b - x) + 1) + a e^x log(e^(b - x) + 1) + 2 a e^b - e^x))/(e^b + e^x)^2
double eb = std::pow(E, b);
double ex = std::pow(E, x);
double ebx= eb / ex;
double ebxa = std::pow(ebx + 1.0, -a);
double lbx = std::log(ebx + 1.0);
return eb * ebxa * (a * lbx * ( a * (-eb) + ex ) + 2.0 * a * eb - ex) / ((eb + ex) * (eb + ex));
}
else if(param_idx == 1){
//partial derivative according to parameter 'b'
//-(a e^b (e^(b - x) + 1)^(-a) (a^2 e^(2 b) - 3 a e^(b + x) - e^(b + x) + e^(2 x)))/(e^b + e^x)^3
double eb = std::pow(E, b);
double ex = std::pow(E, x);
double ebx= eb / ex;
double ebxa = std::pow(ebx + 1.0, -a);
return - a * eb * ebxa * (a * a * eb * eb - 3.0 * a * ebx - ebx + ex * ex) / ((eb + ex) * (eb + ex) * (eb + ex));
}
return 0.0;
}
double NeuronLogistic_d2::activation_function_eval_derivative() {
//(a e^b (1 + e^(b - x))^(-a) (a^2 e^(2 b) + e^(2 x) - e^(b + x) - 3 a e^(b + x)))/(e^b + e^x)^3
double a = this->activation_function_parameters[0];
double b = this->activation_function_parameters[1];
double x = this->potential;
double eb = std::pow(E, b);
double ex = std::pow(E, x);
double ebx= eb / ex;
double ebxa = std::pow(ebx + 1.0, -a);
return a * eb * ebxa * (a * a * eb * eb - 3.0 * a * ebx - ebx + ex * ex) / ((eb + ex) * (eb + ex) * (eb + ex));
}
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 22.7.18 -
*/
#ifndef INC_4NEURO_NEURONLOGISTIC_D2_H
#define INC_4NEURO_NEURONLOGISTIC_D2_H
#include <cmath>
#include "Neuron.h"
#include "../constants.h"
class NeuronLogistic_d2:public Neuron, public IDifferentiable {
friend class boost::serialization::access;
protected:
template<class Archive>
void serialize(Archive & ar, const unsigned int version){
//TODO separate implementation to NeuronLogistic_d1.cpp!
ar & boost::serialization::base_object<Neuron>(*this);
};
public:
Neuron* get_copy( );
/**
* Constructs the object of the Logistic neuron with activation function
* f(x) = [(1 + a) e^(b-x) (1 + e^(b - x))^(-1) - 1]a e^(b - x) (1 + e^(b - x))^(-1 - a)
* @param[in] a First coefficient, stored in activation_function_parameters[0]
* @param[in] b Second coefficient, stored in activation_function_parameters[1]
*/
explicit NeuronLogistic_d2(double a = 0.0, double b = 0.0);
/**
* Evaluates 'a*e^(b - x)*(1 + e^(b - x))^(-1 - a)' and stores the result into the 'state' property
*/
void activate( ) override;
/**
* Calculates the partial derivative of the activation function
* f(x) = [(1 + a) e^(b-x) (1 + e^(b - x))^(-1) - 1]a e^(b - x) (1 + e^(b - x))^(-1 - a)
* @param[in] param_idx Index of the parameter to calculate derivative of
* @return Partial derivative of the activation function according to the
* 'param_idx'-th parameter.
*/
double activation_function_eval_partial_derivative(int param_idx) override;
/**
* Calculates d/dx of [(1 + a) e^(b-x) (1 + e^(b - x))^(-1) - 1]a e^(b - x) (1 + e^(b - x))^(-1 - a)
* @return (a e^b (1 + e^(b - x))^(-a) (a^2 e^(2 b) + e^(2 x) - e^(b + x) - 3 a e^(b + x)))/(e^b + e^x)^3
*/
double activation_function_eval_derivative( ) override;
};
#endif //INC_4NEURO_NEURONLOGISTIC_D2_H
......@@ -32,7 +32,7 @@ void NeuronTanh::activate( ) {
}
double NeuronTanh::activation_function_get_partial_derivative(int param_idx) {
double NeuronTanh::activation_function_eval_partial_derivative(int param_idx) {
double a = this->activation_function_parameters[0];
double x = this->potential;
......@@ -53,7 +53,7 @@ double NeuronTanh::activation_function_get_partial_derivative(int param_idx) {
}
double NeuronTanh::activation_function_get_derivative( ) {
double NeuronTanh::activation_function_eval_derivative( ) {
double a = this->activation_function_parameters[0];
double x = this->potential;
......@@ -61,4 +61,8 @@ double NeuronTanh::activation_function_get_derivative( ) {
double exi = std::pow(E, 2.0 * a) + std::pow(E, 2.0 * x);
return ex / (exi * exi);
}
Neuron* NeuronTanh::get_derivative() {
return nullptr;
}
\ No newline at end of file
......@@ -47,7 +47,7 @@ public:
* @return Partial derivative of the activation function according to the
* 'param_idx'-th parameter.
*/
double activation_function_get_partial_derivative(int param_idx) override;
double activation_function_eval_partial_derivative(int param_idx) override;
/**
* TODO
......@@ -55,7 +55,13 @@ public:
* Calculates d/dx of (e^(x-a) - e^(a-x))/(e^(x-a) + e^(a-x))
* @return a * e^(b - x) * [e^(b - x) + 1]^(-a)
*/
double activation_function_get_derivative( ) override;
double activation_function_eval_derivative( ) override;
/**
* Returns a pointer to a Neuron with derivative as its activation function
* @return
*/
Neuron* get_derivative() override;
};
......
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 22.7.18 -
*/
#include "PDESolver.h"
/**
* File containing methods for quick & simple formulation of PDEs as a system of Neural Networks with shared weights
*
* @author Michal Kravčenko
* @date 22.7.18 -
*/
#ifndef INC_4NEURO_PDESOLVER_H
#define INC_4NEURO_PDESOLVER_H
#include "../DataSet/DataSet.h"
#include "../Network/NeuralNetwork.h"
/**
* class representing a multi-index of partial derivatives
*/
struct MultiIndex{
/**
* total number of variables
*/
unsigned int dim;
/**
* a vector containing degrees of partial derivatives with respect to each variable
*/
std::vector<unsigned int> partial_derivatives_degrees;
};
class PDESolver {
public:
/**
* default constructor
*/
PDESolver();
/**
* default destructor
*/
~PDESolver();
/**
* adds a new boundary condition in the form of
* [d^{k}/d^{alpha}{x_{alpha_1}x_{alpha_2}...x_{alpha_k}} y(x_1, x_2, ..., x_n) = f(x_1, x_2, ..., x_n)]
* to the system.
* @param alpha
* @param conditions
*/
void add_boundary_condition(MultiIndex &alpha, DataSet &conditions);
/**
* adds a new partial derivative in the form of
* [d^{k}/d^{alpha}{x_{alpha_1}x_{alpha_2}...x_{alpha_k}} y(x_1, x_2, ..., x_n)] * beta
* to the PDE.
* @param alpha
* @param beta
*/
void add_to_equation(MultiIndex &alpha, double beta);
/**
* sets the right hand side so PDE(x_1, x_2, ..., x_n) = rhs(x_1, x_2, ..., x_n)
* @param rhs
*/
void set_quation_rhs(DataSet &rhs);
/**
* solves the PDE with its boundary conditions via the particle swarm algorithm
*/
void solve_particle_swarm( );
/**
* returns the pointer to the object representing the solution y(x_1, x_2, ..., x_n)
* @return
*/
NeuralNetwork* get_solution( );
};
#endif //INC_4NEURO_PDESOLVER_H
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment