Skip to content
Snippets Groups Projects
matrix.c 29.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • Michel Selten's avatar
    Michel Selten committed
    /*
    
    Michel Selten's avatar
    Michel Selten committed
     *
     * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License
     * as published by the Free Software Foundation; either version 2
     * of the License, or (at your option) any later version. The Blender
     * Foundation also sells licenses for use in proprietary software under
     * the Blender License.  See http://www.blender.org/BL/ for information
     * about this.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software Foundation,
     * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
     *
     * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
     * All rights reserved.
     *
    
     * Contributor(s): Michel Selten & Joseph Gilbert
    
    Michel Selten's avatar
    Michel Selten committed
     *
     * ***** END GPL/BL DUAL LICENSE BLOCK *****
     */
    
    
    #include "matrix.h"
    
    //doc strings
    
    char Matrix_Zero_doc[] = "() - set all values in the matrix to 0";
    
    char Matrix_Identity_doc[] =
    
    	"() - set the square matrix to it's identity matrix";
    char Matrix_Transpose_doc[] = "() - set the matrix to it's transpose";
    char Matrix_Determinant_doc[] = "() - return the determinant of the matrix";
    
    char Matrix_Invert_doc[] =
    
    	"() - set the matrix to it's inverse if an inverse is possible";
    char Matrix_TranslationPart_doc[] =
    	"() - return a vector encompassing the translation of the matrix";
    char Matrix_RotationPart_doc[] =
    	"() - return a vector encompassing the rotation of the matrix";
    char Matrix_Resize4x4_doc[] = "() - resize the matrix to a 4x4 square matrix";
    char Matrix_toEuler_doc[] = "() - convert matrix to a euler angle rotation";
    char Matrix_toQuat_doc[] = "() - convert matrix to a quaternion rotation";
    
    //methods table
    struct PyMethodDef Matrix_methods[] = {
    
    	{"zero", ( PyCFunction ) Matrix_Zero, METH_NOARGS,
    	 Matrix_Zero_doc},
    	{"identity", ( PyCFunction ) Matrix_Identity, METH_NOARGS,
    	 Matrix_Identity_doc},
    	{"transpose", ( PyCFunction ) Matrix_Transpose, METH_NOARGS,
    	 Matrix_Transpose_doc},
    	{"determinant", ( PyCFunction ) Matrix_Determinant, METH_NOARGS,
    	 Matrix_Determinant_doc},
    	{"invert", ( PyCFunction ) Matrix_Invert, METH_NOARGS,
    	 Matrix_Invert_doc},
    	{"translationPart", ( PyCFunction ) Matrix_TranslationPart,
    	 METH_NOARGS,
    	 Matrix_TranslationPart_doc},
    	{"rotationPart", ( PyCFunction ) Matrix_RotationPart, METH_NOARGS,
    	 Matrix_RotationPart_doc},
    	{"resize4x4", ( PyCFunction ) Matrix_Resize4x4, METH_NOARGS,
    	 Matrix_Resize4x4_doc},
    	{"toEuler", ( PyCFunction ) Matrix_toEuler, METH_NOARGS,
    	 Matrix_toEuler_doc},
    	{"toQuat", ( PyCFunction ) Matrix_toQuat, METH_NOARGS,
    	 Matrix_toQuat_doc},
    
    	{NULL, NULL, 0, NULL}
    };
    
    /*****************************/
    //    Matrix Python Object   
    /*****************************/
    
    
    PyObject *Matrix_toQuat( MatrixObject * self )
    
    Michel Selten's avatar
    Michel Selten committed
    {
    
    	float *quat, *mat;
    
    	if( self->colSize < 3 ) {
    		return EXPP_ReturnPyObjError( PyExc_AttributeError,
    					      "inappropriate matrix size\n" );
    	} else if( self->colSize > 2 ) {	//3 or 4 col
    		if( self->rowSize < 3 )	//3 or 4 row
    			return EXPP_ReturnPyObjError( PyExc_AttributeError,
    						      "inappropriate matrix size\n" );
    
    		mat = PyMem_Malloc( 3 * 3 * sizeof( float ) );
    
    		if( mat == NULL ) {
    			return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    							"problem allocating matrix\n\n" ) );
    		}
    
    		mat[0] = self->matrix[0][0];
    		mat[1] = self->matrix[0][1];
    		mat[2] = self->matrix[0][2];
    		mat[3] = self->matrix[1][0];
    		mat[4] = self->matrix[1][1];
    		mat[5] = self->matrix[1][2];
    		mat[6] = self->matrix[2][0];
    		mat[7] = self->matrix[2][1];
    
    		mat[8] = self->matrix[2][2];
    	}
    
    	quat = PyMem_Malloc( 4 * sizeof( float ) );
    
    	if( quat == NULL ) {
    		PyMem_Free( mat );
    		return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    						"problem allocating quat\n\n" ) );
    	}
    
    	Mat3ToQuat( ( float ( * )[3] ) mat, quat );
    
    	return ( PyObject * ) newQuaternionObject( quat );
    
    PyObject *Matrix_toEuler( MatrixObject * self )
    
    Michel Selten's avatar
    Michel Selten committed
    {
    
    	float *eul, *mat;
    	int x;
    
    	if( self->colSize < 3 ) {
    		return EXPP_ReturnPyObjError( PyExc_AttributeError,
    					      "inappropriate matrix size\n" );
    	} else if( self->colSize > 2 ) {	//3 or 4 col
    		if( self->rowSize < 3 )	//3 or 4 row
    			return EXPP_ReturnPyObjError( PyExc_AttributeError,
    						      "inappropriate matrix size\n" );
    
    		mat = PyMem_Malloc( 3 * 3 * sizeof( float ) );
    
    		if( mat == NULL ) {
    			return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    							"problem allocating mat\n\n" ) );
    		}
    
    		mat[0] = self->matrix[0][0];
    		mat[1] = self->matrix[0][1];
    		mat[2] = self->matrix[0][2];
    		mat[3] = self->matrix[1][0];
    		mat[4] = self->matrix[1][1];
    		mat[5] = self->matrix[1][2];
    		mat[6] = self->matrix[2][0];
    		mat[7] = self->matrix[2][1];
    
    		mat[8] = self->matrix[2][2];
    	}
    
    	eul = PyMem_Malloc( 3 * sizeof( float ) );
    
    	if( eul == NULL ) {
    		PyMem_Free( mat );
    		return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    						"problem allocating eul\n\n" ) );
    	}
    
    	Mat3ToEul( ( float ( * )[3] ) mat, eul );
    
    	for( x = 0; x < 3; x++ ) {
    		eul[x] *= ( float ) ( 180 / Py_PI );
    
    	return ( PyObject * ) newEulerObject( eul );
    
    PyObject *Matrix_Resize4x4( MatrixObject * self )
    
    {
    	float *mat;
    	int x, row, col;
    
    
    	if( self->colSize == 4 && self->rowSize == 4 )
    		return EXPP_incr_ret( Py_None );
    
    	mat = PyMem_Malloc( 4 * 4 * sizeof( float ) );
    
    	if( mat == NULL ) {
    		return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    						"problem allocating mat\n\n" ) );
    	}
    
    	for( x = 0; x < 16; x++ ) {
    
    	if( self->colSize == 2 ) {	//2x2, 2x3, 2x4
    		mat[0] = self->matrix[0][0];
    		mat[1] = self->matrix[0][1];
    		mat[4] = self->matrix[1][0];
    		mat[5] = self->matrix[1][1];
    		if( self->rowSize > 2 ) {
    			mat[8] = self->matrix[2][0];
    			mat[9] = self->matrix[2][1];
    
    		if( self->rowSize > 3 ) {
    			mat[12] = self->matrix[3][0];
    			mat[13] = self->matrix[3][1];
    
    		mat[10] = 1.0f;
    		mat[15] = 1.0f;
    	} else if( self->colSize == 3 ) {	//3x2, 3x3, 3x4
    		mat[0] = self->matrix[0][0];
    		mat[1] = self->matrix[0][1];
    		mat[2] = self->matrix[0][2];
    		mat[4] = self->matrix[1][0];
    		mat[5] = self->matrix[1][1];
    		mat[6] = self->matrix[1][2];
    		if( self->rowSize > 2 ) {
    			mat[8] = self->matrix[2][0];
    			mat[9] = self->matrix[2][1];
    
    			mat[10] = self->matrix[2][2];
    		}
    
    		if( self->rowSize > 3 ) {
    			mat[12] = self->matrix[3][0];
    			mat[13] = self->matrix[3][1];
    
    			mat[14] = self->matrix[3][2];
    		}
    
    		if( self->rowSize == 2 )
    			mat[10] = 1.0f;
    		mat[15] = 1.0f;
    	} else if( self->colSize == 4 ) {	//2x4, 3x4
    		mat[0] = self->matrix[0][0];
    		mat[1] = self->matrix[0][1];
    		mat[2] = self->matrix[0][2];
    		mat[3] = self->matrix[0][3];
    		mat[4] = self->matrix[1][0];
    		mat[5] = self->matrix[1][1];
    		mat[6] = self->matrix[1][2];
    		mat[7] = self->matrix[1][3];
    		if( self->rowSize > 2 ) {
    			mat[8] = self->matrix[2][0];
    			mat[9] = self->matrix[2][1];
    			mat[10] = self->matrix[2][2];
    			mat[11] = self->matrix[2][3];
    
    		if( self->rowSize == 2 )
    			mat[10] = 1.0f;
    
    	PyMem_Free( self->matrix );
    	PyMem_Free( self->contigPtr );
    	self->contigPtr = PyMem_Malloc( 4 * 4 * sizeof( float ) );
    	if( self->contigPtr == NULL ) {
    
    		return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    						"problem allocating array space\n\n" ) );
    
    	self->matrix = PyMem_Malloc( 4 * sizeof( float * ) );
    	if( self->matrix == NULL ) {
    
    		PyMem_Free( self->contigPtr );
    
    		return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    						"problem allocating pointer space\n\n" ) );
    	}
    	for( x = 0; x < 4; x++ ) {
    
    		self->matrix[x] = self->contigPtr + ( x * 4 );
    
    	for( row = 0; row < 4; row++ ) {
    		for( col = 0; col < 4; col++ ) {
    			self->matrix[row][col] = mat[( row * 4 ) + col];
    
    	PyMem_Free( mat );
    
    
    	self->colSize = 4;
    	self->rowSize = 4;
    
    
    	return EXPP_incr_ret( Py_None );
    
    PyObject *Matrix_TranslationPart( MatrixObject * self )
    
    	float *vec = NULL;
    	PyObject *retval;
    
    	if( self->colSize < 3 ) {
    		return EXPP_ReturnPyObjError( PyExc_AttributeError,
    					      "inappropriate matrix size\n" );
    	} else if( self->colSize > 2 ) {	//3 or 4 columns
    		if( self->rowSize < 4 )	//all 4 rows
    			return EXPP_ReturnPyObjError( PyExc_AttributeError,
    						      "inappropriate matrix size\n" );
    
    		vec = PyMem_Malloc( 3 * sizeof( float ) );
    
    		if( vec == NULL ) {
    			return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    							"problem allocating vec\n\n" ) );
    		}
    
    		vec[0] = self->matrix[3][0];
    		vec[1] = self->matrix[3][1];
    		vec[2] = self->matrix[3][2];
    	}
    
    
    	retval =  ( PyObject * ) newVectorObject( vec, 3 );
    	PyMem_Free( vec );
    	return retval;
    
    PyObject *Matrix_RotationPart( MatrixObject * self )
    
    	if( self->colSize < 3 ) {
    		return EXPP_ReturnPyObjError( PyExc_AttributeError,
    					      "inappropriate matrix size\n" );
    	} else if( self->colSize > 2 ) {	//3 or 4 col
    		if( self->rowSize < 3 )	//3 or 4 row
    			return EXPP_ReturnPyObjError( PyExc_AttributeError,
    						      "inappropriate matrix size\n" );
    
    		mat = PyMem_Malloc( 3 * 3 * sizeof( float ) );
    
    		if( mat == NULL ) {
    			return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    							"problem allocating mat\n\n" ) );
    		}
    
    		mat[0] = self->matrix[0][0];
    		mat[1] = self->matrix[0][1];
    		mat[2] = self->matrix[0][2];
    		mat[3] = self->matrix[1][0];
    		mat[4] = self->matrix[1][1];
    		mat[5] = self->matrix[1][2];
    		mat[6] = self->matrix[2][0];
    		mat[7] = self->matrix[2][1];
    
    		mat[8] = self->matrix[2][2];
    	}
    
    
    	return ( PyObject * ) newMatrixObject( mat, 3, 3 );
    
    PyObject *Matrix_Invert( MatrixObject * self )
    
    Willian Padovani Germano's avatar
    Willian Padovani Germano committed
    	float *mat = NULL;
    
    	if( self->rowSize != self->colSize )
    		return EXPP_ReturnPyObjError( PyExc_AttributeError,
    					      "only square matrices are supported\n" );
    
    
    	//calculate the determinant
    
    	if( self->rowSize == 2 ) {
    		det = Det2x2( self->matrix[0][0], self->matrix[0][1],
    			      self->matrix[1][0], self->matrix[1][1] );
    	} else if( self->rowSize == 3 ) {
    		det = Det3x3( self->matrix[0][0], self->matrix[0][1],
    			      self->matrix[0][2], self->matrix[1][0],
    			      self->matrix[1][1], self->matrix[1][2],
    			      self->matrix[2][0], self->matrix[2][1],
    			      self->matrix[2][2] );
    	} else if( self->rowSize == 4 ) {
    		det = Det4x4( *self->matrix );
    	} else {
    		return EXPP_ReturnPyObjError( PyExc_StandardError,
    					      "error calculating determinant for inverse()\n" );
    	}
    
    	if( det != 0 ) {
    
    
    		//calculate the classical adjoint
    
    		if( self->rowSize == 2 ) {
    			mat = PyMem_Malloc( self->rowSize * self->colSize *
    					    sizeof( float ) );
    
    			if( mat == NULL ) {
    				return ( EXPP_ReturnPyObjError
    					 ( PyExc_MemoryError,
    					   "problem allocating mat\n\n" ) );
    			}
    
    			mat[0] = self->matrix[1][1];
    			mat[1] = -self->matrix[1][0];
    			mat[2] = -self->matrix[0][1];
    			mat[3] = self->matrix[0][0];
    
    		} else if( self->rowSize == 3 ) {
    			mat = PyMem_Malloc( self->rowSize * self->colSize *
    					    sizeof( float ) );
    
    			if( mat == NULL ) {
    				return ( EXPP_ReturnPyObjError
    					 ( PyExc_MemoryError,
    					   "problem allocating mat\n\n" ) );
    			}
    
    			Mat3Adj( ( float ( * )[3] ) mat, *self->matrix );
    		} else if( self->rowSize == 4 ) {
    			mat = PyMem_Malloc( self->rowSize * self->colSize *
    					    sizeof( float ) );
    
    			if( mat == NULL ) {
    				return ( EXPP_ReturnPyObjError
    					 ( PyExc_MemoryError,
    					   "problem allocating mat\n\n" ) );
    			}
    
    			Mat4Adj( ( float ( * )[4] ) mat, *self->matrix );
    
    		}
    		//divide by determinate
    
    		for( x = 0; x < ( self->rowSize * self->colSize ); x++ ) {
    
    			mat[x] /= det;
    		}
    
    		//set values
    		z = 0;
    
    		for( x = 0; x < self->rowSize; x++ ) {
    			for( y = 0; y < self->colSize; y++ ) {
    
    				self->matrix[x][y] = mat[z];
    				z++;
    			}
    		}
    
    		//transpose
    
    		if( self->rowSize == 2 ) {
    
    			t = self->matrix[1][0];
    			self->matrix[1][0] = self->matrix[0][1];
    			self->matrix[0][1] = t;
    
    			
    /* 
       Note: is the code below correct?  
       transposing mat and not copying into self->matrix? 
       s. swaney 11-oct-2004
    */
    
    		} else if( self->rowSize == 3 ) {
    			Mat3Transp( ( float ( * )[3] ) mat );
    		} else if( self->rowSize == 4 ) {
    			Mat4Transp( ( float ( * )[4] ) mat );
    
    	} else {
    		printf( "matrix does not have an inverse - none attempted\n" );
    
    	PyMem_Free( mat );
    
    	return EXPP_incr_ret( Py_None );
    
    PyObject *Matrix_Determinant( MatrixObject * self )
    
    	if( self->rowSize != self->colSize )
    		return EXPP_ReturnPyObjError( PyExc_AttributeError,
    					      "only square matrices are supported\n" );
    
    	if( self->rowSize == 2 ) {
    		det = Det2x2( self->matrix[0][0], self->matrix[0][1],
    			      self->matrix[1][0], self->matrix[1][1] );
    	} else if( self->rowSize == 3 ) {
    		det = Det3x3( self->matrix[0][0], self->matrix[0][1],
    			      self->matrix[0][2], self->matrix[1][0],
    			      self->matrix[1][1], self->matrix[1][2],
    			      self->matrix[2][0], self->matrix[2][1],
    			      self->matrix[2][2] );
    	} else if( self->rowSize == 4 ) {
    		det = Det4x4( *self->matrix );
    	} else {
    		return EXPP_ReturnPyObjError( PyExc_StandardError,
    					      "error in determinant()\n" );
    	}
    	return PyFloat_FromDouble( det );
    
    PyObject *Matrix_Transpose( MatrixObject * self )
    
    	if( self->rowSize != self->colSize )
    		return EXPP_ReturnPyObjError( PyExc_AttributeError,
    					      "only square matrices are supported\n" );
    
    	if( self->rowSize == 2 ) {
    
    		t = self->matrix[1][0];
    		self->matrix[1][0] = self->matrix[0][1];
    		self->matrix[0][1] = t;
    
    	} else if( self->rowSize == 3 ) {
    		Mat3Transp( *self->matrix );
    	} else if( self->rowSize == 4 ) {
    		Mat4Transp( *self->matrix );
    	} else
    		return ( EXPP_ReturnPyObjError( PyExc_TypeError,
    						"unable to transpose matrix\n" ) );
    
    	return EXPP_incr_ret( Py_None );
    
    PyObject *Matrix_Zero( MatrixObject * self )
    
    	for( row = 0; row < self->rowSize; row++ ) {
    		for( col = 0; col < self->colSize; col++ ) {
    
    			self->matrix[row][col] = 0.0f;
    		}
    	}
    
    	return EXPP_incr_ret( Py_None );
    
    PyObject *Matrix_Identity( MatrixObject * self )
    
    	if( self->rowSize != self->colSize )
    		return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
    						"only square matrices supported\n" ) );
    
    	if( self->rowSize == 2 ) {
    
    		self->matrix[0][0] = 1.0f;
    		self->matrix[0][1] = 0.0f;
    		self->matrix[1][0] = 0.0f;
    		self->matrix[1][1] = 1.0f;
    
    	} else if( self->rowSize == 3 ) {
    		Mat3One( *self->matrix );
    	} else if( self->rowSize == 4 ) {
    		Mat4One( *self->matrix );
    	} else
    		return ( EXPP_ReturnPyObjError( PyExc_TypeError,
    						"unable to create identity matrix\n" ) );
    
    	return EXPP_incr_ret( Py_None );
    
    static void Matrix_dealloc( MatrixObject * self )
    
    	PyMem_Free( self->contigPtr );
    
    	PyMem_Free( self->matrix );
    
    
    	PyObject_DEL( self );
    
    static PyObject *Matrix_getattr( MatrixObject * self, char *name )
    
    	if( strcmp( name, "rowSize" ) == 0 ) {
    		return PyInt_FromLong( ( long ) self->rowSize );
    	} else if( strcmp( name, "colSize" ) == 0 ) {
    		return PyInt_FromLong( ( long ) self->colSize );
    	}
    
    	return Py_FindMethod( Matrix_methods, ( PyObject * ) self, name );
    
    static int Matrix_setattr( MatrixObject * self, char *name, PyObject * v )
    
    Michel Selten's avatar
    Michel Selten committed
    {
    
    	/* This is not supported. */
    	return ( -1 );
    
    static PyObject *Matrix_repr( MatrixObject * self )
    
    Michel Selten's avatar
    Michel Selten committed
    {
    
    	PyObject *repr, *str;
    
    	repr = PyString_FromString( "" );
    	if( !repr )
    		return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
    						"Attribute error in PyMatrix (repr)\n" ) );
    
    	for( x = 0; x < self->rowSize; x++ ) {
    		str = PyString_FromString( "[" );
    		PyString_ConcatAndDel( &repr, str );
    
    		for( y = 0; y < ( self->colSize - 1 ); y++ ) {
    			sprintf( ftoa, "%.4f, ", self->matrix[x][y] );
    			str = PyString_FromString( ftoa );
    			PyString_ConcatAndDel( &repr, str );
    
    		sprintf( ftoa, "%.4f]\n", self->matrix[x][y] );
    		str = PyString_FromString( ftoa );
    		PyString_ConcatAndDel( &repr, str );
    
    //no support for matrix[x][y] so have to return by sequence index
    
    //will return a row from the matrix to support previous API
    //compatability
    
    static PyObject *Matrix_item( MatrixObject * self, int i )
    
    Michel Selten's avatar
    Michel Selten committed
    {
    
    	float *vec = NULL;
    	PyObject *retval;
    
    	if( i < 0 || i >= self->rowSize )
    		return EXPP_ReturnPyObjError( PyExc_IndexError,
    					      "matrix row index out of range\n" );
    
    	vec = PyMem_Malloc( self->colSize * sizeof( float ) );
    
    	if( vec == NULL ) {
    		return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    						"problem allocating vec\n\n" ) );
    	}
    
    	for( x = 0; x < self->colSize; x++ ) {
    
    	retval =( PyObject * ) newVectorObject( vec, self->colSize );
    	PyMem_Free( vec );
    	return retval;
    
    static PyObject *Matrix_slice( MatrixObject * self, int begin, int end )
    
    {
    	PyObject *list;
    	int count, maxsize, x, y;
    
    	maxsize = self->colSize * self->rowSize;
    
    	if( begin < 0 )
    		begin = 0;
    	if( end > maxsize )
    		end = maxsize;
    	if( begin > end )
    		begin = end;
    
    	list = PyList_New( end - begin );
    
    	for( count = begin; count < end; count++ ) {
    		x = ( int ) floor( ( double ) ( count / self->colSize ) );
    
    		y = count % self->colSize;
    
    		PyList_SetItem( list, count - begin,
    				PyFloat_FromDouble( self->matrix[x][y] ) );
    
    static int Matrix_ass_item( MatrixObject * self, int i, PyObject * ob )
    
    {
    	int maxsize, x, y;
    
    	maxsize = self->colSize * self->rowSize;
    
    	if( i < 0 || i >= maxsize )
    		return EXPP_ReturnIntError( PyExc_IndexError,
    					    "array assignment index out of range\n" );
    	if( !PyInt_Check( ob ) && !PyFloat_Check( ob ) )
    		return EXPP_ReturnIntError( PyExc_IndexError,
    					    "matrix member must be a number\n" );
    
    	x = ( int ) floor( ( double ) ( i / self->colSize ) );
    
    	y = i % self->colSize;
    
    	self->matrix[x][y] = ( float ) PyFloat_AsDouble( ob );
    
    static int Matrix_ass_slice( MatrixObject * self, int begin, int end,
    			     PyObject * seq )
    
    {
    	int count, maxsize, x, y, z;
    
    
    	maxsize = self->colSize * self->rowSize;
    	if( begin < 0 )
    		begin = 0;
    	if( end > maxsize )
    		end = maxsize;
    	if( begin > end )
    		begin = end;
    
    	if( !PySequence_Check( seq ) )
    		return EXPP_ReturnIntError( PyExc_TypeError,
    					    "illegal argument type for built-in operation\n" );
    	if( PySequence_Length( seq ) != ( end - begin ) )
    		return EXPP_ReturnIntError( PyExc_TypeError,
    					    "size mismatch in slice assignment\n" );
    
    	for( count = begin; count < end; count++ ) {
    		PyObject *ob = PySequence_GetItem( seq, z );
    		z++;
    		if( !PyInt_Check( ob ) && !PyFloat_Check( ob ) )
    			return EXPP_ReturnIntError( PyExc_IndexError,
    						    "list member must be a number\n" );
    
    		x = ( int ) floor( ( double ) ( count / self->colSize ) );
    
    		y = count % self->colSize;
    
    		if( !PyArg_Parse( ob, "f", &self->matrix[x][y] ) ) {
    			Py_DECREF( ob );
    
    static int Matrix_len( MatrixObject * self )
    
    	return ( self->colSize * self->rowSize );
    
    PyObject *Matrix_add( PyObject * m1, PyObject * m2 )
    
    	float *mat;
    	int matSize, rowSize, colSize, x, y;
    
    	if( ( !Matrix_CheckPyObject( m1 ) )
    	    || ( !Matrix_CheckPyObject( m2 ) ) )
    		return EXPP_ReturnPyObjError( PyExc_TypeError,
    					      "unsupported type for this operation\n" );
    
    	if( ( ( MatrixObject * ) m1 )->flag > 0
    	    || ( ( MatrixObject * ) m2 )->flag > 0 )
    		return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
    					      "cannot add scalar to a matrix\n" );
    
    	if( ( ( MatrixObject * ) m1 )->rowSize !=
    	    ( ( MatrixObject * ) m2 )->rowSize
    	    || ( ( MatrixObject * ) m1 )->colSize !=
    	    ( ( MatrixObject * ) m2 )->colSize )
    		return EXPP_ReturnPyObjError( PyExc_AttributeError,
    					      "matrices must be the same same for this operation\n" );
    
    	rowSize = ( ( ( MatrixObject * ) m1 )->rowSize );
    	colSize = ( ( ( MatrixObject * ) m1 )->colSize );
    
    	matSize = rowSize * colSize;
    
    
    	mat = PyMem_Malloc( matSize * sizeof( float ) );
    
    	if( mat == NULL ) {
    		return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    						"problem allocating mat\n\n" ) );
    	}
    
    	for( x = 0; x < rowSize; x++ ) {
    		for( y = 0; y < colSize; y++ ) {
    			mat[( ( x * rowSize ) + y )] =
    				( ( MatrixObject * ) m1 )->matrix[x][y] +
    				( ( MatrixObject * ) m2 )->matrix[x][y];
    
    	return newMatrixObject( mat, rowSize, colSize );
    
    PyObject *Matrix_sub( PyObject * m1, PyObject * m2 )
    
    	float *mat;
    	int matSize, rowSize, colSize, x, y;
    
    	if( ( !Matrix_CheckPyObject( m1 ) )
    	    || ( !Matrix_CheckPyObject( m2 ) ) )
    		return EXPP_ReturnPyObjError( PyExc_TypeError,
    					      "unsupported type for this operation\n" );
    
    	if( ( ( MatrixObject * ) m1 )->flag > 0
    	    || ( ( MatrixObject * ) m2 )->flag > 0 )
    		return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
    					      "cannot subtract a scalar from a matrix\n" );
    
    	if( ( ( MatrixObject * ) m1 )->rowSize !=
    	    ( ( MatrixObject * ) m2 )->rowSize
    	    || ( ( MatrixObject * ) m1 )->colSize !=
    	    ( ( MatrixObject * ) m2 )->colSize )
    		return EXPP_ReturnPyObjError( PyExc_AttributeError,
    					      "matrices must be the same same for this operation\n" );
    
    	rowSize = ( ( ( MatrixObject * ) m1 )->rowSize );
    	colSize = ( ( ( MatrixObject * ) m1 )->colSize );
    	matSize = rowSize * colSize;
    
    	mat = PyMem_Malloc( matSize * sizeof( float ) );
    
    	if( mat == NULL ) {
    		return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    						"problem allocating mat\n\n" ) );
    	}
    
    	for( x = 0; x < rowSize; x++ ) {
    		for( y = 0; y < colSize; y++ ) {
    			mat[( ( x * rowSize ) + y )] =
    				( ( MatrixObject * ) m1 )->matrix[x][y] -
    				( ( MatrixObject * ) m2 )->matrix[x][y];
    
    	return newMatrixObject( mat, rowSize, colSize );
    
    PyObject *Matrix_mul( PyObject * m1, PyObject * m2 )
    
    	float *mat;
    	int matSizeV, rowSizeV, colSizeV, rowSizeW, colSizeW, matSizeW, x, y,
    		z;
    
    	float dot = 0;
    
    	MatrixObject *matV;
    	MatrixObject *matW;
    
    	if( ( !Matrix_CheckPyObject( m1 ) )
    	    || ( !Matrix_CheckPyObject( m2 ) ) )
    		return EXPP_ReturnPyObjError( PyExc_TypeError,
    					      "unsupported type for this operation\n" );
    
    	rowSizeV = ( ( ( MatrixObject * ) m1 )->rowSize );
    	colSizeV = ( ( ( MatrixObject * ) m1 )->colSize );
    
    	matSizeV = rowSizeV * colSizeV;
    
    	rowSizeW = ( ( ( MatrixObject * ) m2 )->rowSize );
    	colSizeW = ( ( ( MatrixObject * ) m2 )->colSize );
    
    	matSizeW = rowSizeW * colSizeW;
    
    	matV = ( ( MatrixObject * ) m1 );
    	matW = ( ( MatrixObject * ) m2 );
    
    
    	//coerced int or float for scalar multiplication
    
    	if( matW->flag > 1 || matW->flag > 2 ) {
    
    		if( rowSizeV != rowSizeW && colSizeV != colSizeW )
    			return EXPP_ReturnPyObjError( PyExc_AttributeError,
    						      "Matrix dimension error during scalar multiplication\n" );
    
    		mat = PyMem_Malloc( matSizeV * sizeof( float ) );
    
    		if( mat == NULL ) {
    			return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    							"problem allocating mat\n\n" ) );
    		}
    
    		for( x = 0; x < rowSizeV; x++ ) {
    			for( y = 0; y < colSizeV; y++ ) {
    				mat[( ( x * rowSizeV ) + y )] =
    					matV->matrix[x][y] *
    					matW->matrix[x][y];
    
    		return newMatrixObject( mat, rowSizeV, colSizeV );
    	} else if( matW->flag == 0 && matV->flag == 0 ) {	//true matrix multiplication
    		if( colSizeV != rowSizeW ) {
    			return EXPP_ReturnPyObjError( PyExc_AttributeError,
    						      "Matrix multiplication undefined...\n" );
    
    		mat = PyMem_Malloc( ( rowSizeV * colSizeW ) *
    				    sizeof( float ) );
    
    		if( mat == NULL ) {
    			return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    							"problem allocating mat\n\n" ) );
    		}
    
    		for( x = 0; x < rowSizeV; x++ ) {
    			for( y = 0; y < colSizeW; y++ ) {
    				for( z = 0; z < colSizeV; z++ ) {
    					dot += ( matV->matrix[x][z] *
    						 matW->matrix[z][y] );
    
    				mat[( ( x * rowSizeV ) + y )] = dot;
    
    		return newMatrixObject( mat, rowSizeV, colSizeW );
    	} else
    		return EXPP_ReturnPyObjError( PyExc_AttributeError,
    					      "Error in matrix_mul...\n" );
    
    }
    
    //coercion of unknown types to type MatrixObject for numeric protocols
    
    int Matrix_coerce( PyObject ** m1, PyObject ** m2 )
    {
    
    	long *tempI;
    	double *tempF;
    	float *mat;
    	int x, matSize;
    
    
    	matSize =
    		( ( ( MatrixObject * ) * m1 )->rowSize ) *
    		( ( ( MatrixObject * ) * m1 )->rowSize );
    	if( Matrix_CheckPyObject( *m1 ) ) {
    		if( Matrix_CheckPyObject( *m2 ) ) {	//matrix & matrix
    			Py_INCREF( *m1 );
    			Py_INCREF( *m2 );
    
    		} else {
    			if( VectorObject_Check( *m2 ) ) {	//matrix & vector?
    				printf( "use MatMultVec() for column vector multiplication\n" );
    				Py_INCREF( *m1 );
    
    			} else if( PyNumber_Check( *m2 ) ) {	//& scalar?
    				if( PyInt_Check( *m2 ) ) {	//it's a int
    					tempI = PyMem_Malloc( 1 *
    							      sizeof( long ) );
    
    					if( tempI == NULL ) {
    
    						return ( EXPP_ReturnIntError
    
    							 ( PyExc_MemoryError,
    							   "problem allocating tempI\n\n" ) );
    					}
    
    					*tempI = PyInt_AsLong( *m2 );
    					mat = PyMem_Malloc( matSize *
    							    sizeof( float ) );
    
    					if( mat == NULL ) {
    						PyMem_Free( tempI );
    
    						return ( EXPP_ReturnIntError
    
    							 ( PyExc_MemoryError,
    							   "problem allocating mat\n\n" ) );
    					}
    
    					for( x = 0; x < matSize; x++ ) {
    						mat[x] = ( float ) *tempI;
    
    					PyMem_Free( tempI );
    					*m2 = newMatrixObject( mat,
    							       ( ( ( MatrixObject * ) * m1 )->rowSize ), ( ( ( MatrixObject * ) * m1 )->colSize ) );
    					( ( MatrixObject * ) * m2 )->flag = 1;	//int coercion
    					PyMem_Free( mat );
    					Py_INCREF( *m1 );
    
    				} else if( PyFloat_Check( *m2 ) ) {	//it's a float
    					tempF = PyMem_Malloc( 1 *
    							      sizeof
    							      ( double ) );
    
    					if( tempF == NULL ) {
    
    						return ( EXPP_ReturnIntError
    
    							 ( PyExc_MemoryError,
    							   "problem allocating tempF\n\n" ) );
    					}
    
    					*tempF = PyFloat_AsDouble( *m2 );
    					mat = PyMem_Malloc( matSize *
    							    sizeof( float ) );
    
    					if( mat == NULL ) {
    						PyMem_Free( tempF );
    
    						return ( EXPP_ReturnIntError
    
    							 ( PyExc_MemoryError,
    							   "problem allocating mat\n\n" ) );
    					}
    
    					for( x = 0; x < matSize; x++ ) {
    						mat[x] = ( float ) *tempF;
    
    					PyMem_Free( tempF );
    					*m2 = newMatrixObject( mat,
    							       ( ( ( MatrixObject * ) * m1 )->rowSize ), ( ( ( MatrixObject * ) * m1 )->colSize ) );
    					( ( MatrixObject * ) * m2 )->flag = 2;	//float coercion
    					PyMem_Free( mat );
    					Py_INCREF( *m1 );
    
    					return 0;
    				}
    			}
    			//unknom2n type or numeric cast failure
    
    			printf( "attempting matrix operation m2ith unsupported type...\n" );
    			Py_INCREF( *m1 );
    			return 0;	//operation m2ill type check
    
    		//1st not Matrix
    
    		printf( "numeric protocol failure...\n" );
    		return -1;	//this should not occur - fail
    
    }
    
    //******************************************************************
    
    //                                      Matrix definition
    
    //******************************************************************
    
    static PySequenceMethods Matrix_SeqMethods = {
    	( inquiry ) Matrix_len,	/* sq_length */
    	( binaryfunc ) 0,	/* sq_concat */
    	( intargfunc ) 0,	/* sq_repeat */
    	( intargfunc ) Matrix_item,	/* sq_item */
    	( intintargfunc ) Matrix_slice,	/* sq_slice */
    	( intobjargproc ) Matrix_ass_item,	/* sq_ass_item */
    	( intintobjargproc ) Matrix_ass_slice,	/* sq_ass_slice */
    
    static PyNumberMethods Matrix_NumMethods = {
    	( binaryfunc ) Matrix_add,	/* __add__ */
    	( binaryfunc ) Matrix_sub,	/* __sub__ */
    	( binaryfunc ) Matrix_mul,	/* __mul__ */
    	( binaryfunc ) 0,	/* __div__ */
    	( binaryfunc ) 0,	/* __mod__ */
    	( binaryfunc ) 0,	/* __divmod__ */
    	( ternaryfunc ) 0,	/* __pow__ */
    	( unaryfunc ) 0,	/* __neg__ */
    	( unaryfunc ) 0,	/* __pos__ */
    	( unaryfunc ) 0,	/* __abs__ */
    	( inquiry ) 0,		/* __nonzero__ */
    	( unaryfunc ) 0,	/* __invert__ */
    	( binaryfunc ) 0,	/* __lshift__ */
    	( binaryfunc ) 0,	/* __rshift__ */
    	( binaryfunc ) 0,	/* __and__ */
    	( binaryfunc ) 0,	/* __xor__ */
    	( binaryfunc ) 0,	/* __or__ */
    	( coercion ) Matrix_coerce,	/* __coerce__ */
    	( unaryfunc ) 0,	/* __int__ */
    	( unaryfunc ) 0,	/* __long__ */
    	( unaryfunc ) 0,	/* __float__ */
    	( unaryfunc ) 0,	/* __oct__ */
    	( unaryfunc ) 0,	/* __hex__ */
    
    PyTypeObject matrix_Type = {
    
    	PyObject_HEAD_INIT( NULL )    /*   required python macro   */
    
    	0,	/*ob_size */
    	"Matrix",		/*tp_name */
    	sizeof( MatrixObject ),	/*tp_basicsize */
    	0,			/*tp_itemsize */
    	( destructor ) Matrix_dealloc,	/*tp_dealloc */
    	( printfunc ) 0,	/*tp_print */
    	( getattrfunc ) Matrix_getattr,	/*tp_getattr */
    	( setattrfunc ) Matrix_setattr,	/*tp_setattr */
    	0,			/*tp_compare */
    	( reprfunc ) Matrix_repr,	/*tp_repr */
    	&Matrix_NumMethods,	/*tp_as_number */
    	&Matrix_SeqMethods,	/*tp_as_sequence */
    
    //******************************************************************
    
    //Function:                              newMatrixObject
    
    //******************************************************************
    
    PyObject *newMatrixObject( float *mat, int rowSize, int colSize )
    
    Michel Selten's avatar
    Michel Selten committed
    {
    
    	MatrixObject *self;
    
    	int row, col, x;
    
    	if( rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4 )
    		return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
    						"row and column sizes must be between 2 and 4\n" ) );
    
    	self = PyObject_NEW( MatrixObject, &matrix_Type );
    
    
    	//generate contigous memory space
    
    	self->contigPtr = PyMem_Malloc( rowSize * colSize * sizeof( float ) );
    	if( self->contigPtr == NULL ) {
    
    		return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    						"problem allocating array space\n\n" ) );
    
    	}
    	//create pointer array
    
    	self->matrix = PyMem_Malloc( rowSize * sizeof( float * ) );
    	if( self->matrix == NULL ) {
    
    		PyMem_Free( self->contigPtr );
    
    		return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
    						"problem allocating pointer space\n\n" ) );