Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include "FEDataStructures.h"
#include <mpi.h>
#include <stdio.h>
#include <unistd.h>
#include <iostream>
#include <stdlib.h>
#ifdef USE_CATALYST
#include "FEAdaptor.h"
#endif
int main(int argc, char** argv)
{
// Check the input arguments
if (argc < 5) {
printf("Not all arguments supplied (grid definition, Python script name)\n");
return 0;
}
unsigned int pointsX = abs(std::stoi(argv[1]));
unsigned int pointsY = abs(std::stoi(argv[2]));
unsigned int pointsZ = abs(std::stoi(argv[3]));
// MPI_Init(&argc, &argv);
MPI_Init(NULL, NULL);
Grid grid;
unsigned int numPoints[3] = { pointsX, pointsY, pointsZ };
double spacing[3] = { 1, 1.1, 1.3 };
grid.Initialize(numPoints, spacing);
Attributes attributes;
attributes.Initialize(&grid);
#ifdef USE_CATALYST
// The argument nr. 4 is the Python script name
FEAdaptor::Initialize(argv[4]);
#endif
unsigned int numberOfTimeSteps = 1000;
for (unsigned int timeStep = 0; timeStep < numberOfTimeSteps; timeStep++)
{
// Use a time step of length 0.1
double time = timeStep * 0.1;
attributes.UpdateFields(time);
#ifdef USE_CATALYST
FEAdaptor::CoProcess(grid, attributes, time, timeStep, timeStep == numberOfTimeSteps - 1);
#endif
// Get the name of the processor
char processor_name[MPI_MAX_PROCESSOR_NAME];
int name_len;
MPI_Get_processor_name(processor_name, &name_len);
// Print actual time step and processor name that handles the calculation
printf("This is processor %s, time step: %0.3f\n", processor_name, time);
usleep(500000);
}
#ifdef USE_CATALYST
FEAdaptor::Finalize();
#endif
MPI_Finalize();
return 0;
}