Skip to content
Snippets Groups Projects
r.md 11.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    # R
    
    ## Introduction
    
    The R is a language and environment for statistical computing and graphics.  R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, ...) and graphical techniques, and is highly extensible.
    
    One of R's strengths is the ease with which well-designed publication-quality plots can be produced, including mathematical symbols and formulae where needed. Great care has been taken over the defaults for the minor design choices in graphics, but the user retains full control.
    
    Another convenience is the ease with which the C code or third party libraries may be integrated within R.
    
    Extensive support for parallel computing is available within R.
    
    Read more on <http://www.r-project.org/>, <http://cran.r-project.org/doc/manuals/r-release/R-lang.html>
    
    ## Modules
    
    The R version 3.1.1 is available on the cluster, along with GUI interface Rstudio
    
    | Application | Version           | module              |
    | ----------- | ----------------- | ------------------- |
    | **R**       | R 3.1.1           | R/3.1.1-intel-2015b |
    | **Rstudio** | Rstudio 0.98.1103 | Rstudio             |
    
    ```console
    $ ml R
    ```
    
    ## Execution
    
    The R on cluster is linked to highly optimized MKL mathematical library. This provides threaded parallelization to many R kernels, notably the linear algebra subroutines. The R runs these heavy calculation kernels without any penalty. By default, the R would parallelize to 24 (Salomon) or 16 (Anselm) threads. You may control the threads by setting the OMP_NUM_THREADS environment variable.
    
    ### Interactive Execution
    
    To run R interactively, using Rstudio GUI, log in with ssh -X parameter for X11 forwarding. Run rstudio:
    
    ```console
    $ ml Rstudio
    $ rstudio
    ```
    
    ### Batch Execution
    
    To run R in batch mode, write an R script, then write a bash jobscript and execute via the qsub command. By default, R will use 24 (Salomon) or 16 (Anselm) threads when running MKL kernels.
    
    Example jobscript:
    
    ```bash
    #!/bin/bash
    
    # change to local scratch directory
    cd /lscratch/$PBS_JOBID || exit
    
    # copy input file to scratch
    cp $PBS_O_WORKDIR/rscript.R .
    
    # load R module
    module load R
    
    # execute the calculation
    R CMD BATCH rscript.R routput.out
    
    # copy output file to home
    cp routput.out $PBS_O_WORKDIR/.
    
    #exit
    exit
    ```
    
    This script may be submitted directly to the PBS workload manager via the qsub command.  The inputs are in rscript.R file, outputs in routput.out file. See the single node jobscript example in the [Job execution section](../../job-submission-and-execution/).
    
    ## Parallel R
    
    Parallel execution of R may be achieved in many ways. One approach is the implied parallelization due to linked libraries or specially enabled functions, as [described above](r/#interactive-execution). In the following sections, we focus on explicit parallelization, where parallel constructs are directly stated within the R script.
    
    ## Package Parallel
    
    The package parallel provides support for parallel computation, including by forking (taken from package multicore), by sockets (taken from package snow) and random-number generation.
    
    The package is activated this way:
    
    ```console
    $ R
    > library(parallel)
    ```
    
    More information and examples may be obtained directly by reading the documentation available in R
    
    ```r
    > ?parallel
    > library(help = "parallel")
    > vignette("parallel")
    ```
    
    Download the package [parallell](package-parallel-vignette.pdf) vignette.
    
    The forking is the most simple to use. Forking family of functions provide parallelized, drop in replacement for the serial apply() family of functions.
    
    !!! warning
        Forking via package parallel provides functionality similar to OpenMP construct omp parallel for
    
        Only cores of single node can be utilized this way!
    
    Forking example:
    
    ```r
    library(parallel)
    
    #integrand function
    f <- function(i,h) {
    x <- h*(i-0.5)
    return (4/(1 + x*x))
    }
    
    #initialize
    size <- detectCores()
    
    while (TRUE)
    {
      #read number of intervals
      cat("Enter the number of intervals: (0 quits) ")
      fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
    
      if(n<=0) break
    
      #run the calculation
      n <- max(n,size)
      h <-   1.0/n
    
      i <- seq(1,n);
      pi3 <- h*sum(simplify2array(mclapply(i,f,h,mc.cores=size)));
    
      #print results
      cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
    }
    ```
    
    The above example is the classic parallel example for calculating the number π. Note the **detectCores()** and **mclapply()** functions. Execute the example as:
    
    ```console
    $ R --slave --no-save --no-restore -f pi3p.R
    ```
    
    Every evaluation of the integrad function runs in parallel on different process.
    
    ## Package Rmpi
    
    package Rmpi provides an interface (wrapper) to MPI APIs.
    
    It also provides interactive R slave environment. On the cluster, Rmpi provides interface to the [OpenMPI](../mpi/Running_OpenMPI/).
    
    Read more on Rmpi at <http://cran.r-project.org/web/packages/Rmpi/>, reference manual is available at <http://cran.r-project.org/web/packages/Rmpi/Rmpi.pdf>
    
    When using package Rmpi, both openmpi and R modules must be loaded
    
    ```console
    $ ml OpenMPI
    $ ml R
    ```
    
    Rmpi may be used in three basic ways. The static approach is identical to executing any other MPI programm. In addition, there is Rslaves dynamic MPI approach and the mpi.apply approach. In the following section, we will use the number π integration example, to illustrate all these concepts.
    
    ### Static Rmpi
    
    Static Rmpi programs are executed via mpiexec, as any other MPI programs. Number of processes is static - given at the launch time.
    
    Static Rmpi example:
    
    ```r
    library(Rmpi)
    
    #integrand function
    f <- function(i,h) {
    x <- h*(i-0.5)
    return (4/(1 + x*x))
    }
    
    #initialize
    invisible(mpi.comm.dup(0,1))
    rank <- mpi.comm.rank()
    size <- mpi.comm.size()
    n<-0
    
    while (TRUE)
    {
      #read number of intervals
      if (rank==0) {
       cat("Enter the number of intervals: (0 quits) ")
       fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
      }
    
      #broadcat the intervals
      n <- mpi.bcast(as.integer(n),type=1)
    
      if(n<=0) break
    
      #run the calculation
      n <- max(n,size)
      h <-   1.0/n
    
      i <- seq(rank+1,n,size);
      mypi <- h*sum(sapply(i,f,h));
    
      pi3 <- mpi.reduce(mypi)
    
      #print results
      if (rank==0) cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
    }
    
    mpi.quit()
    ```
    
    The above is the static MPI example for calculating the number π. Note the **library(Rmpi)** and **mpi.comm.dup()** function calls. Execute the example as:
    
    ```console
    $ mpirun R --slave --no-save --no-restore -f pi3.R
    ```
    
    ### Dynamic Rmpi
    
    Dynamic Rmpi programs are executed by calling the R directly. OpenMPI module must be still loaded. The R slave processes will be spawned by a function call within the Rmpi program.
    
    Dynamic Rmpi example:
    
    ```r
    #integrand function
    f <- function(i,h) {
    x <- h*(i-0.5)
    return (4/(1 + x*x))
    }
    
    #the worker function
    workerpi <- function()
    {
    #initialize
    rank <- mpi.comm.rank()
    size <- mpi.comm.size()
    n<-0
    
    while (TRUE)
    {
      #read number of intervals
      if (rank==0) {
       cat("Enter the number of intervals: (0 quits) ")
       fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
      }
    
      #broadcat the intervals
      n <- mpi.bcast(as.integer(n),type=1)
    
      if(n<=0) break
    
      #run the calculation
      n <- max(n,size)
      h <-   1.0/n
    
      i <- seq(rank+1,n,size);
      mypi <- h*sum(sapply(i,f,h));
    
      pi3 <- mpi.reduce(mypi)
    
      #print results
      if (rank==0) cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
    }
    }
    
    #main
    library(Rmpi)
    
    cat("Enter the number of slaves: ")
    fp<-file("stdin"); ns<-scan(fp,nmax=1); close(fp)
    
    mpi.spawn.Rslaves(nslaves=ns)
    mpi.bcast.Robj2slave(f)
    mpi.bcast.Robj2slave(workerpi)
    
    mpi.bcast.cmd(workerpi())
    workerpi()
    
    mpi.quit()
    ```
    
    The above example is the dynamic MPI example for calculating the number π. Both master and slave processes carry out the calculation. Note the mpi.spawn.Rslaves(), mpi.bcast.Robj2slave()** and the mpi.bcast.cmd()** function calls.
    
    Execute the example as:
    
    ```console
    $ mpirun -np 1 R --slave --no-save --no-restore -f pi3Rslaves.R
    ```
    
    Note that this method uses MPI_Comm_spawn (Dynamic process feature of MPI-2) to start the slave processes - the master process needs to be launched with MPI. In general, Dynamic processes are not well supported among MPI implementations, some issues might arise. Also, environment variables are not propagated to spawned processes, so they will not see paths from modules.
    
    ### mpi.apply Rmpi
    
    mpi.apply is a specific way of executing Dynamic Rmpi programs.
    
    mpi.apply() family of functions provide MPI parallelized, drop in replacement for the serial apply() family of functions.
    
    Execution is identical to other dynamic Rmpi programs.
    
    mpi.apply Rmpi example:
    
    ```r
    #integrand function
    f <- function(i,h) {
    x <- h*(i-0.5)
    return (4/(1 + x*x))
    }
    
    #the worker function
    workerpi <- function(rank,size,n)
    {
      #run the calculation
      n <- max(n,size)
      h <- 1.0/n
    
      i <- seq(rank,n,size);
      mypi <- h*sum(sapply(i,f,h));
    
      return(mypi)
    }
    
    #main
    library(Rmpi)
    
    cat("Enter the number of slaves: ")
    fp<-file("stdin"); ns<-scan(fp,nmax=1); close(fp)
    
    mpi.spawn.Rslaves(nslaves=ns)
    mpi.bcast.Robj2slave(f)
    mpi.bcast.Robj2slave(workerpi)
    
    while (TRUE)
    {
      #read number of intervals
      cat("Enter the number of intervals: (0 quits) ")
      fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
      if(n<=0) break
    
      #run workerpi
      i=seq(1,2*ns)
      pi3=sum(mpi.parSapply(i,workerpi,2*ns,n))
    
      #print results
      cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
    }
    
    mpi.quit()
    ```
    
    The above is the mpi.apply MPI example for calculating the number π. Only the slave processes carry out the calculation. Note the **mpi.parSapply()**, function call. The package parallel [example](r/#package-parallel) [above](r/#package-parallel) may be trivially adapted (for much better performance) to this structure using the mclapply() in place of mpi.parSapply().
    
    Execute the example as:
    
    ```console
    $ mpirun -np 1 R --slave --no-save --no-restore -f pi3parSapply.R
    ```
    
    ## Combining Parallel and Rmpi
    
    Currently, the two packages can not be combined for hybrid calculations.
    
    ## Parallel Execution
    
    The R parallel jobs are executed via the PBS queue system exactly as any other parallel jobs. User must create an appropriate jobscript and submit via the **qsub**
    
    Example jobscript for [static Rmpi](r/#static-rmpi) parallel R execution, running 1 process per core:
    
    ```bash
    #!/bin/bash
    #PBS -q qprod
    #PBS -N Rjob
    #PBS -l select=100:ncpus=24:mpiprocs=24:ompthreads=1 # Anselm: ncpus=16:mpiprocs=16
    
    # change to scratch directory
    SCRDIR=/scratch/work/user/$USER/myjob # Anselm: SCRDIR=/scratch/$USER/myjob
    cd $SCRDIR || exit
    
    # copy input file to scratch
    cp $PBS_O_WORKDIR/rscript.R .
    
    # load R and openmpi module
    module load R
    module load OpenMPI
    
    # execute the calculation
    mpiexec -bycore -bind-to-core R --slave --no-save --no-restore -f rscript.R
    
    # copy output file to home
    cp routput.out $PBS_O_WORKDIR/.
    
    #exit
    exit
    ```
    
    For more information about jobscripts and MPI execution refer to the [Job submission](../../anselm/job-submission-and-execution/) and general [MPI](../mpi/mpi/) sections.
    
    ## Xeon Phi Offload
    
    By leveraging MKL, R can accelerate certain computations, most notably linear algebra operations on the Xeon Phi accelerator by using Automated Offload. To use MKL Automated Offload, you need to first set this environment variable before R execution:
    
    ```console
    $ export MKL_MIC_ENABLE=1
    ```
    
    [Read more about automatic offload](../intel-xeon-phi/)