Skip to content
Snippets Groups Projects
intel-xeon-phi.md 31.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    Intel Xeon Phi 
    ==============
    
    A guide to Intel Xeon Phi usage
    
      
    
    Intel Xeon Phi can be programmed in several modes. The default mode on
    Anselm is offload mode, but all modes described in this document are
    supported.
    
    Intel Utilities for Xeon Phi
    ----------------------------
    
    To get access to a compute node with Intel Xeon Phi accelerator, use the
    PBS interactive session
    
        $ qsub -I -q qmic -A NONE-0-0
    
    To set up the environment module "Intel" has to be loaded
    
        $ module load intel/13.5.192
    
    Information about the hardware can be obtained by running
    the micinfo program on the host.
    
        $ /usr/bin/micinfo
    
    The output of the "micinfo" utility executed on one of the Anselm node
    is as follows. (note: to get PCIe related details the command has to be
    run with root privileges)
    
        MicInfo Utility Log
    
        Created Mon Jul 22 00:23:50 2013
    
                System Info
                        HOST OS                 : Linux
                        OS Version              : 2.6.32-279.5.2.bl6.Bull.33.x86_64
                        Driver Version          : 6720-15
                        MPSS Version            : 2.1.6720-15
                        Host Physical Memory    : 98843 MB
    
        Device No: 0, Device Name: mic0
    
                Version
                        Flash Version            : 2.1.03.0386
                        SMC Firmware Version     : 1.15.4830
                        SMC Boot Loader Version  : 1.8.4326
                        uOS Version              : 2.6.38.8-g2593b11
                        Device Serial Number     : ADKC30102482
    
                Board
                        Vendor ID                : 0x8086
                        Device ID                : 0x2250
                        Subsystem ID             : 0x2500
                        Coprocessor Stepping ID  : 3
                        PCIe Width               : x16
                        PCIe Speed               : 5 GT/s
                        PCIe Max payload size    : 256 bytes
                        PCIe Max read req size   : 512 bytes
                        Coprocessor Model        : 0x01
                        Coprocessor Model Ext    : 0x00
                        Coprocessor Type         : 0x00
                        Coprocessor Family       : 0x0b
                        Coprocessor Family Ext   : 0x00
                        Coprocessor Stepping     : B1
                        Board SKU                : B1PRQ-5110P/5120D
                        ECC Mode                 : Enabled
                        SMC HW Revision          : Product 225W Passive CS
    
                Cores
                        Total No of Active Cores : 60
                        Voltage                  : 1032000 uV
                        Frequency                : 1052631 kHz
    
                Thermal
                        Fan Speed Control        : N/A
                        Fan RPM                  : N/A
                        Fan PWM                  : N/A
                        Die Temp                 : 49 C
    
                GDDR
                        GDDR Vendor              : Elpida
                        GDDR Version             : 0x1
                        GDDR Density             : 2048 Mb
                        GDDR Size                : 7936 MB
                        GDDR Technology          : GDDR5
                        GDDR Speed               : 5.000000 GT/s
                        GDDR Frequency           : 2500000 kHz
                        GDDR Voltage             : 1501000 uV
    
    Offload Mode
    ------------
    
    To compile a code for Intel Xeon Phi a MPSS stack has to be installed on
    the machine where compilation is executed. Currently the MPSS stack is
    only installed on compute nodes equipped with accelerators.
    
        $ qsub -I -q qmic -A NONE-0-0
        $ module load intel/13.5.192
    
    For debugging purposes it is also recommended to set environment
    variable "OFFLOAD_REPORT". Value can be set from 0 to 3, where higher
    number means more debugging information.
    
        export OFFLOAD_REPORT=3
    
    A very basic example of code that employs offload programming technique
    is shown in the next listing. Please note that this code is sequential
    and utilizes only single core of the accelerator.
    
        $ vim source-offload.cpp
    
        #include <iostream>
    
        int main(int argc, char* argv[])
        {
            const int niter = 100000;
            double result = 0;
    
         #pragma offload target(mic)
            for (int i = 0; i < niter; ++i) {
                const double t = (i + 0.5) / niter;
                result += 4.0 / (t * t + 1.0);
            }
            result /= niter;
            std::cout << "Pi ~ " << result << 'n';
        }
    
    To compile a code using Intel compiler run
    
        $ icc source-offload.cpp -o bin-offload
    
    To execute the code, run the following command on the host
    
        ./bin-offload
    
    ### Parallelization in Offload Mode Using OpenMP
    
    One way of paralelization a code for Xeon Phi is using OpenMP
    directives. The following example shows code for parallel vector
    addition. 
    
        $ vim ./vect-add 
    
        #include <stdio.h>
    
        typedef int T;
    
        #define SIZE 1000
    
        #pragma offload_attribute(push, target(mic))
        T in1[SIZE];
        T in2[SIZE];
        T res[SIZE];
        #pragma offload_attribute(pop)
    
        // MIC function to add two vectors
        __attribute__((target(mic))) add_mic(T *a, T *b, T *c, int size) {
          int i = 0;
          #pragma omp parallel for
            for (i = 0; i < size; i++)
              c[i] = a[i] + b[i];
        }
    
        // CPU function to add two vectors
        void add_cpu (T *a, T *b, T *c, int size) {
          int i;
          for (i = 0; i < size; i++)
            c[i] = a[i] + b[i];
        }
    
        // CPU function to generate a vector of random numbers
        void random_T (T *a, int size) {
          int i;
          for (i = 0; i < size; i++)
            a[i] = rand() % 10000; // random number between 0 and 9999
        }
    
        // CPU function to compare two vectors
        int compare(T *a, T *b, T size ){
          int pass = 0;
          int i;
          for (i = 0; i < size; i++){
            if (a[i] != b[i]) {
              printf("Value mismatch at location %d, values %d and %dn",i, a[i], b[i]);
              pass = 1;
            }
          }
          if (pass == 0) printf ("Test passedn"); else printf ("Test Failedn");
          return pass;
        }
    
        int main()
        {
          int i;
          random_T(in1, SIZE);
          random_T(in2, SIZE);
    
          #pragma offload target(mic) in(in1,in2)  inout(res)
          {
    
            // Parallel loop from main function
            #pragma omp parallel for
            for (i=0; i<SIZE; i++)
              res[i] = in1[i] + in2[i];
    
            // or parallel loop is called inside the function
            add_mic(in1, in2, res, SIZE);
    
          }
    
          //Check the results with CPU implementation
          T res_cpu[SIZE];
          add_cpu(in1, in2, res_cpu, SIZE);
          compare(res, res_cpu, SIZE);
    
        }
    
    During the compilation Intel compiler shows which loops have been
    vectorized in both host and accelerator. This can be enabled with
    compiler option "-vec-report2". To compile and execute the code run
    
        $ icc vect-add.c -openmp_report2 -vec-report2 -o vect-add
    
        $ ./vect-add 
    
    Some interesting compiler flags useful not only for code debugging are:
    
    Debugging
      openmp_report[0|1|2] - controls the compiler based vectorization
    diagnostic level
      vec-report[0|1|2] - controls the OpenMP parallelizer diagnostic
    level
    
    Performance ooptimization
      xhost - FOR HOST ONLY - to generate AVX (Advanced Vector Extensions)
    instructions.
    
    Automatic Offload using Intel MKL Library
    -----------------------------------------
    
    Intel MKL includes an Automatic Offload (AO) feature that enables
    computationally intensive MKL functions called in user code to benefit
    from attached Intel Xeon Phi coprocessors automatically and
    transparently.
    
    Behavioral of automatic offload mode is controlled by functions called
    within the program or by environmental variables. Complete list of
    controls is listed [
    here](http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_userguide_lnx/GUID-3DC4FC7D-A1E4-423D-9C0C-06AB265FFA86.htm).
    
    The Automatic Offload may be enabled by either an MKL function call
    within the code:
    
        mkl_mic_enable();
    
    or by setting environment variable
    
        $ export MKL_MIC_ENABLE=1
    
    To get more information about automatic offload please refer to "[Using
    Intel® MKL Automatic Offload on Intel ® Xeon Phi™
    Coprocessors](http://software.intel.com/sites/default/files/11MIC42_How_to_Use_MKL_Automatic_Offload_0.pdf)"
    white paper or [ Intel MKL
    documentation](https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation).
    
    ### Automatic offload example
    
    At first get an interactive PBS session on a node with MIC accelerator
    and load "intel" module that automatically loads "mkl" module as well.
    
        $ qsub -I -q qmic -A OPEN-0-0 -l select=1:ncpus=16
        $ module load intel
    
    Following example show how to automatically offload an SGEMM (single
    precision - g dir="auto">eneral matrix multiply) function to
    MIC coprocessor. The code can be copied to a file and compiled without
    any necessary modification. 
    
        $ vim sgemm-ao-short.c
    
        #include <stdio.h>
        #include <stdlib.h>
        #include <malloc.h>
        #include <stdint.h>
    
        #include "mkl.h"
    
        int main(int argc, char **argv)
        {
                float *A, *B, *C; /* Matrices */
    
                MKL_INT N = 2560; /* Matrix dimensions */
                MKL_INT LD = N; /* Leading dimension */
                int matrix_bytes; /* Matrix size in bytes */
                int matrix_elements; /* Matrix size in elements */
    
                float alpha = 1.0, beta = 1.0; /* Scaling factors */
                char transa = 'N', transb = 'N'; /* Transposition options */
    
                int i, j; /* Counters */
    
                matrix_elements = N * N;
                matrix_bytes = sizeof(float) * matrix_elements;
    
                /* Allocate the matrices */
                A = malloc(matrix_bytes); B = malloc(matrix_bytes); C = malloc(matrix_bytes);
    
                /* Initialize the matrices */
                for (i = 0; i < matrix_elements; i++) {
                        A[i] = 1.0; B[i] = 2.0; C[i] = 0.0;
                }
    
                printf("Computing SGEMM on the hostn");
                sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N, &beta, C, &N);
    
                printf("Enabling Automatic Offloadn");
                /* Alternatively, set environment variable MKL_MIC_ENABLE=1 */
                mkl_mic_enable();
                
                int ndevices = mkl_mic_get_device_count(); /* Number of MIC devices */
                printf("Automatic Offload enabled: %d MIC devices presentn",   ndevices);
    
                printf("Computing SGEMM with automatic workdivisionn");
                sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N, &beta, C, &N);
    
                /* Free the matrix memory */
                free(A); free(B); free(C);
    
                printf("Donen");
    
            return 0;
        }
    
    Please note: This example is simplified version of an example from MKL.
    The expanded version can be found here:
    $MKL_EXAMPLES/mic_ao/blasc/source/sgemm.c**
    
    To compile a code using Intel compiler use:
    
        $ icc -mkl sgemm-ao-short.c -o sgemm
    
    For debugging purposes enable the offload report to see more information
    about automatic offloading.
    
        $ export OFFLOAD_REPORT=2
    
    The output of a code should look similar to following listing, where
    lines starting with [MKL] are generated by offload reporting:
    
        Computing SGEMM on the host
        Enabling Automatic Offload
        Automatic Offload enabled: 1 MIC devices present
        Computing SGEMM with automatic workdivision
        [MKL] [MIC --] [AO Function]    SGEMM
        [MKL] [MIC --] [AO SGEMM Workdivision]  0.00 1.00
        [MKL] [MIC 00] [AO SGEMM CPU Time]      0.463351 seconds
        [MKL] [MIC 00] [AO SGEMM MIC Time]      0.179608 seconds
        [MKL] [MIC 00] [AO SGEMM CPU->MIC Data] 52428800 bytes
        [MKL] [MIC 00] [AO SGEMM MIC->CPU Data] 26214400 bytes
        Done
    
     
    
    Native Mode
    -----------
    
    In the native mode a program is executed directly on Intel Xeon Phi
    without involvement of the host machine. Similarly to offload mode, the
    code is compiled on the host computer with Intel compilers.
    
    To compile a code user has to be connected to a compute with MIC and
    load Intel compilers module. To get an interactive session on a compute
    node with an Intel Xeon Phi and load the module use following commands: 
    
        $ qsub -I -q qmic -A NONE-0-0
    
        $ module load intel/13.5.192
    
    Please note that particular version of the Intel module is specified.
    This information is used later to specify the correct library paths.
    
    To produce a binary compatible with Intel Xeon Phi architecture user has
    to specify "-mmic" compiler flag. Two compilation examples are shown
    below. The first example shows how to compile OpenMP parallel code
    "vect-add.c" for host only:
    
        $ icc -xhost -no-offload -fopenmp vect-add.c -o vect-add-host
    
    To run this code on host, use:
    
        $ ./vect-add-host
    
    The second example shows how to compile the same code for Intel Xeon
    Phi:
    
        $ icc -mmic -fopenmp vect-add.c -o vect-add-mic
    
    ### Execution of the Program in Native Mode on Intel Xeon Phi
    
    The user access to the Intel Xeon Phi is through the SSH. Since user
    home directories are mounted using NFS on the accelerator, users do not
    have to copy binary files or libraries between the host and accelerator.
     
    
    To connect to the accelerator run:
    
        $ ssh mic0
    
    If the code is sequential, it can be executed directly:
    
        mic0 $ ~/path_to_binary/vect-add-seq-mic
    
    If the code is parallelized using OpenMP a set of additional libraries
    is required for execution. To locate these libraries new path has to be
    added to the LD_LIBRARY_PATH environment variable prior to the
    execution:
    
        mic0 $ export LD_LIBRARY_PATH=/apps/intel/composer_xe_2013.5.192/compiler/lib/mic:$LD_LIBRARY_PATH
    
    Please note that the path exported in the previous example contains path
    to a specific compiler (here the version is 5.192). This version number
    has to match with the version number of the Intel compiler module that
    was used to compile the code on the host computer.
    
    For your information the list of libraries and their location required
    for execution of an OpenMP parallel code on Intel Xeon Phi is:
    
    /apps/intel/composer_xe_2013.5.192/compiler/lib/mic
    
    libiomp5.so
    libimf.so
    libsvml.so
    libirng.so
    libintlc.so.5
    
    Finally, to run the compiled code use: 
    
        $ ~/path_to_binary/vect-add-mic
    
    OpenCL
    -------------------
    
    OpenCL (Open Computing Language) is an open standard for
    general-purpose parallel programming for diverse mix of multi-core CPUs,
    GPU coprocessors, and other parallel processors. OpenCL provides a
    flexible execution model and uniform programming environment for
    software developers to write portable code for systems running on both
    the CPU and graphics processors or accelerators like the Intel® Xeon
    Phi.
    
    On Anselm OpenCL is installed only on compute nodes with MIC
    accelerator, therefore OpenCL code can be compiled only on these nodes.
    
        module load opencl-sdk opencl-rt
    
    Always load "opencl-sdk" (providing devel files like headers) and
    "opencl-rt" (providing dynamic library libOpenCL.so) modules to compile
    and link OpenCL code. Load "opencl-rt" for running your compiled code.
    
    There are two basic examples of OpenCL code in the following
    directory: 
    
        /apps/intel/opencl-examples/
    
    First example "CapsBasic" detects OpenCL compatible hardware, here
    CPU and MIC, and prints basic information about the capabilities of
    it. 
    
        /apps/intel/opencl-examples/CapsBasic/capsbasic
    
    To compile and run the example copy it to your home directory, get
    a PBS interactive session on of the nodes with MIC and run make for
    compilation. Make files are very basic and shows how the OpenCL code can
    be compiled on Anselm. 
    
        $ cp /apps/intel/opencl-examples/CapsBasic/* .
        $ qsub -I -q qmic -A NONE-0-0
        $ make
    
    The compilation command for this example is: 
    
        $ g++ capsbasic.cpp -lOpenCL -o capsbasic -I/apps/intel/opencl/include/
    
    After executing the complied binary file, following output should
    be displayed.
    
        ./capsbasic
    
        Number of available platforms: 1
        Platform names:
            [0] Intel(R) OpenCL [Selected]
        Number of devices available for each type:
            CL_DEVICE_TYPE_CPU: 1
            CL_DEVICE_TYPE_GPU: 0
            CL_DEVICE_TYPE_ACCELERATOR: 1
    
        ** Detailed information for each device ***
    
        CL_DEVICE_TYPE_CPU[0]
            CL_DEVICE_NAME:        Intel(R) Xeon(R) CPU E5-2470 0 @ 2.30GHz
            CL_DEVICE_AVAILABLE: 1
    
        ...
    
        CL_DEVICE_TYPE_ACCELERATOR[0]
            CL_DEVICE_NAME: Intel(R) Many Integrated Core Acceleration Card
            CL_DEVICE_AVAILABLE: 1
    
        ...
    
    More information about this example can be found on Intel website:
    <http://software.intel.com/en-us/vcsource/samples/caps-basic/>
    
    The second example that can be found in
    "/apps/intel/opencl-examples" >directory is General Matrix
    Multiply. You can follow the the same procedure to download the example
    to your directory and compile it. 
    
        $ cp -r /apps/intel/opencl-examples/* .
        $ qsub -I -q qmic -A NONE-0-0
        $ cd GEMM 
        $ make
    
    The compilation command for this example is: 
    
        $ g++ cmdoptions.cpp gemm.cpp ../common/basic.cpp ../common/cmdparser.cpp ../common/oclobject.cpp -I../common -lOpenCL -o gemm -I/apps/intel/opencl/include/
    
    To see the performance of Intel Xeon Phi performing the DGEMM run
    the example as follows: 
    
        ./gemm -d 1
        Platforms (1):
         [0] Intel(R) OpenCL [Selected]
        Devices (2):
         [0] Intel(R) Xeon(R) CPU E5-2470 0 @ 2.30GHz
         [1] Intel(R) Many Integrated Core Acceleration Card [Selected]
        Build program options: "-DT=float -DTILE_SIZE_M=1 -DTILE_GROUP_M=16 -DTILE_SIZE_N=128 -DTILE_GROUP_N=1 -DTILE_SIZE_K=8"
        Running gemm_nn kernel with matrix size: 3968x3968
        Memory row stride to ensure necessary alignment: 15872 bytes
        Size of memory region for one matrix: 62980096 bytes
        Using alpha = 0.57599 and beta = 0.872412
        ...
        Host time: 0.292953 sec.
        Host perf: 426.635 GFLOPS
        Host time: 0.293334 sec.
        Host perf: 426.081 GFLOPS
        ...
    
    Please note: GNU compiler is used to compile the OpenCL codes for
    Intel MIC. You do not need to load Intel compiler module.
    
    MPI 
    -----------------
    
    ### Environment setup and compilation
    
    Again an MPI code for Intel Xeon Phi has to be compiled on a compute
    node with accelerator and MPSS software stack installed. To get to a
    compute node with accelerator use:
    
        $ qsub -I -q qmic -A NONE-0-0
    
    The only supported implementation of MPI standard for Intel Xeon Phi is
    Intel MPI. To setup a fully functional development environment a
    combination of Intel compiler and Intel MPI has to be used. On a host
    load following modules before compilation:
    
        $ module load intel/13.5.192 impi/4.1.1.036 
    
    To compile an MPI code for host use:
    
        $ mpiicc -xhost -o mpi-test mpi-test.c
    
    To compile the same code for Intel Xeon Phi architecture use:
    
        $ mpiicc -mmic -o mpi-test-mic mpi-test.c
    
    An example of basic MPI version of "hello-world" example in C language,
    that can be executed on both host and Xeon Phi is (can be directly copy
    and pasted to a .c file)
    
        #include <stdio.h>
        #include <mpi.h>
    
        int main (argc, argv)
             int argc;
             char *argv[];
        {
          int rank, size;
    
          int len;
          char node[MPI_MAX_PROCESSOR_NAME];
    
          MPI_Init (&argc, &argv);      /* starts MPI */
          MPI_Comm_rank (MPI_COMM_WORLD, &rank);        /* get current process id */
          MPI_Comm_size (MPI_COMM_WORLD, &size);        /* get number of processes */
    
          MPI_Get_processor_name(node,&len);
    
          printf( "Hello world from process %d of %d on host %s n", rank, size, node );
          MPI_Finalize();
          return 0; 
        }
    
    ### MPI programming models
    
    Intel MPI for the Xeon Phi coprocessors offers different MPI
    programming models:
    
    Host-only model** - all MPI ranks reside on the host. The coprocessors
    can be used by using offload pragmas. (Using MPI calls inside offloaded
    code is not supported.)**
    
    Coprocessor-only model** - all MPI ranks reside only on the
    coprocessors.
    
    Symmetric model** - the MPI ranks reside on both the host and the
    coprocessor. Most general MPI case.
    
    ###Host-only model
    
    In this case all environment variables are set by modules,
    so to execute the compiled MPI program on a single node, use:
    
        $ mpirun -np 4 ./mpi-test
    
    The output should be similar to:
    
        Hello world from process 1 of 4 on host cn207
        Hello world from process 3 of 4 on host cn207
        Hello world from process 2 of 4 on host cn207
        Hello world from process 0 of 4 on host cn207
    
    ### Coprocessor-only model
    
    There are two ways how to execute an MPI code on a single
    coprocessor: 1.) lunch the program using "**mpirun**" from the
    coprocessor; or 2.) lunch the task using "**mpiexec.hydra**" from a
    host.
    
    Execution on coprocessor** 
    
    Similarly to execution of OpenMP programs in native mode, since the
    environmental module are not supported on MIC, user has to setup paths
    to Intel MPI libraries and binaries manually. One time setup can be done
    by creating a "**.profile**" file in user's home directory. This file
    sets up the environment on the MIC automatically once user access to the
    accelerator through the SSH.
    
        $ vim ~/.profile 
    
        PS1='[u@h W]$ '
        export PATH=/usr/bin:/usr/sbin:/bin:/sbin
    
        #OpenMP
        export LD_LIBRARY_PATH=/apps/intel/composer_xe_2013.5.192/compiler/lib/mic:$LD_LIBRARY_PATH
    
        #Intel MPI 
        export LD_LIBRARY_PATH=/apps/intel/impi/4.1.1.036/mic/lib/:$LD_LIBRARY_PATH
        export PATH=/apps/intel/impi/4.1.1.036/mic/bin/:$PATH
    
    Please note:
     - this file sets up both environmental variable for both MPI and OpenMP
    libraries.
     - this file sets up the paths to a particular version of Intel MPI
    library and particular version of an Intel compiler. These versions have
    to match with loaded modules.
    
    To access a MIC accelerator located on a node that user is currently
    connected to, use:
    
        $ ssh mic0
    
    or in case you need specify a MIC accelerator on a particular node, use:
    
        $ ssh cn207-mic0
    
    To run the MPI code in parallel on multiple core of the accelerator,
    use:
    
        $ mpirun -np 4 ./mpi-test-mic
    
    The output should be similar to:
    
        Hello world from process 1 of 4 on host cn207-mic0
        Hello world from process 2 of 4 on host cn207-mic0
        Hello world from process 3 of 4 on host cn207-mic0
        Hello world from process 0 of 4 on host cn207-mic0
    
    **Execution on host**
    
    If the MPI program is launched from host instead of the coprocessor, the
    environmental variables are not set using the ".profile" file. Therefore
    user has to specify library paths from the command line when calling
    "mpiexec".
    
    First step is to tell mpiexec that the MPI should be executed on a local
    accelerator by setting up the environmental variable "I_MPI_MIC"
    
        $ export I_MPI_MIC=1
    
    Now the MPI program can be executed as:
    
        $ mpiexec.hydra -genv LD_LIBRARY_PATH /apps/intel/impi/4.1.1.036/mic/lib/ -host mic0 -n 4 ~/mpi-test-mic
    
    or using mpirun
    
        $ mpirun -genv LD_LIBRARY_PATH /apps/intel/impi/4.1.1.036/mic/lib/ -host mic0 -n 4 ~/mpi-test-mic
    
    Please note:
     - the full path to the binary has to specified (here:
    "**>~/mpi-test-mic**")
     - the LD_LIBRARY_PATH has to match with Intel MPI module used to
    compile the MPI code
    
    The output should be again similar to:
    
        Hello world from process 1 of 4 on host cn207-mic0
        Hello world from process 2 of 4 on host cn207-mic0
        Hello world from process 3 of 4 on host cn207-mic0
        Hello world from process 0 of 4 on host cn207-mic0
    
    Please note that the "mpiexec.hydra" requires a file
    "**>pmi_proxy**" from Intel MPI library to be copied to the
    MIC filesystem. If the file is missing please contact the system
    administrators. A simple test to see if the file is present is to
    execute:
    
          $ ssh mic0 ls /bin/pmi_proxy
          /bin/pmi_proxy
    
    **Execution on host - MPI processes distributed over multiple
    accelerators on multiple nodes**
    
    To get access to multiple nodes with MIC accelerator, user has to
    use PBS to allocate the resources. To start interactive session, that
    allocates 2 compute nodes = 2 MIC accelerators run qsub command with
    following parameters: 
    
        $ qsub -I -q qmic -A NONE-0-0 -l select=2:ncpus=16
    
        $ module load intel/13.5.192 impi/4.1.1.036
    
    This command connects user through ssh to one of the nodes
    immediately. To see the other nodes that have been allocated use:
    
        $ cat $PBS_NODEFILE
    
    For example: 
    
        cn204.bullx
        cn205.bullx
    
    This output means that the PBS allocated nodes cn204 and cn205,
    which means that user has direct access to "**cn204-mic0**" and
    "**cn-205-mic0**" accelerators.
    
    Please note: At this point user can connect to any of the
    allocated nodes or any of the allocated MIC accelerators using ssh:
    - to connect to the second node : ** $ ssh
    cn205**
    - to connect to the accelerator on the first node from the first
    node:  **$ ssh cn204-mic0** or
     $ ssh mic0**
    -** to connect to the accelerator on the second node from the first
    node:  **$ ssh cn205-mic0**
    
    At this point we expect that correct modules are loaded and binary
    is compiled. For parallel execution the mpiexec.hydra is used.
    Again the first step is to tell mpiexec that the MPI can be executed on
    MIC accelerators by setting up the environmental variable "I_MPI_MIC"
    
        $ export I_MPI_MIC=1
    
    The launch the MPI program use:
    
        $ mpiexec.hydra -genv LD_LIBRARY_PATH /apps/intel/impi/4.1.1.036/mic/lib/ 
         -genv I_MPI_FABRICS_LIST tcp 
         -genv I_MPI_FABRICS shm:tcp 
         -genv I_MPI_TCP_NETMASK=10.1.0.0/16 
         -host cn204-mic0 -n 4 ~/mpi-test-mic 
        : -host cn205-mic0 -n 6 ~/mpi-test-mic
    
    or using mpirun:
    
        $ mpirun -genv LD_LIBRARY_PATH /apps/intel/impi/4.1.1.036/mic/lib/ 
         -genv I_MPI_FABRICS_LIST tcp 
         -genv I_MPI_FABRICS shm:tcp 
         -genv I_MPI_TCP_NETMASK=10.1.0.0/16 
         -host cn204-mic0 -n 4 ~/mpi-test-mic 
        : -host cn205-mic0 -n 6 ~/mpi-test-mic
    
    In this case four MPI processes are executed on accelerator cn204-mic
    and six processes are executed on accelerator cn205-mic0. The sample
    output (sorted after execution) is:
    
        Hello world from process 0 of 10 on host cn204-mic0
        Hello world from process 1 of 10 on host cn204-mic0
        Hello world from process 2 of 10 on host cn204-mic0
        Hello world from process 3 of 10 on host cn204-mic0
        Hello world from process 4 of 10 on host cn205-mic0
        Hello world from process 5 of 10 on host cn205-mic0
        Hello world from process 6 of 10 on host cn205-mic0
        Hello world from process 7 of 10 on host cn205-mic0
        Hello world from process 8 of 10 on host cn205-mic0
        Hello world from process 9 of 10 on host cn205-mic0
    
    The same way MPI program can be executed on multiple hosts: 
    
        $ mpiexec.hydra -genv LD_LIBRARY_PATH /apps/intel/impi/4.1.1.036/mic/lib/ 
         -genv I_MPI_FABRICS_LIST tcp 
         -genv I_MPI_FABRICS shm:tcp 
         -genv I_MPI_TCP_NETMASK=10.1.0.0/16
         -host cn204 -n 4 ~/mpi-test 
        : -host cn205 -n 6 ~/mpi-test
    
    ###Symmetric model 
    
    In a symmetric mode MPI programs are executed on both host
    computer(s) and MIC accelerator(s). Since MIC has a different
    architecture and requires different binary file produced by the Intel
    compiler two different files has to be compiled before MPI program is
    executed. 
    
    In the previous section we have compiled two binary files, one for
    hosts "**mpi-test**" and one for MIC accelerators "**mpi-test-mic**".
    These two binaries can be executed at once using mpiexec.hydra:
    
        $ mpiexec.hydra 
         -genv I_MPI_FABRICS_LIST tcp 
         -genv I_MPI_FABRICS shm:tcp 
         -genv I_MPI_TCP_NETMASK=10.1.0.0/16 
         -genv LD_LIBRARY_PATH /apps/intel/impi/4.1.1.036/mic/lib/ 
         -host cn205 -n 2 ~/mpi-test 
        : -host cn205-mic0 -n 2 ~/mpi-test-mic
    
    In this example the first two parameters (line 2 and 3) sets up required
    environment variables for execution. The third line specifies binary
    that is executed on host (here cn205) and the last line specifies the
    binary that is execute on the accelerator (here cn205-mic0).
    
    The output of the program is: 
    
        Hello world from process 0 of 4 on host cn205
        Hello world from process 1 of 4 on host cn205
        Hello world from process 2 of 4 on host cn205-mic0
        Hello world from process 3 of 4 on host cn205-mic0
    
    The execution procedure can be simplified by using the mpirun
    command with the machine file a a parameter. Machine file contains list
    of all nodes and accelerators that should used to execute MPI processes.
    
    An example of a machine file that uses 2 >hosts (**cn205**
    and **cn206**) and 2 accelerators **(cn205-mic0** and **cn206-mic0**) to
    run 2 MPI processes on each of them:
    
        $ cat hosts_file_mix
        cn205:2
        cn205-mic0:2
        cn206:2
        cn206-mic0:2
    
    In addition if a naming convention is set in a way that the name
    of the binary for host is **"bin_name"**  and the name of the binary
    for the accelerator is **"bin_name-mic"** then by setting up the
    environment variable **I_MPI_MIC_POSTFIX** to **"-mic"** user do not
    have to specify the names of booth binaries. In this case mpirun needs
    just the name of the host binary file (i.e. "mpi-test") and uses the
    suffix to get a name of the binary for accelerator (i..e.
    "mpi-test-mic").
    
        $ export I_MPI_MIC_POSTFIX=-mic
    
     >To run the MPI code using mpirun and the machine file
    "hosts_file_mix" use:
    
        $ mpirun 
         -genv I_MPI_FABRICS shm:tcp 
         -genv LD_LIBRARY_PATH /apps/intel/impi/4.1.1.036/mic/lib/ 
         -genv I_MPI_FABRICS_LIST tcp 
         -genv I_MPI_FABRICS shm:tcp 
         -genv I_MPI_TCP_NETMASK=10.1.0.0/16 
         -machinefile hosts_file_mix 
         ~/mpi-test
    
    A possible output of the MPI "hello-world" example executed on two
    hosts and two accelerators is:
    
        Hello world from process 0 of 8 on host cn204
        Hello world from process 1 of 8 on host cn204
        Hello world from process 2 of 8 on host cn204-mic0
        Hello world from process 3 of 8 on host cn204-mic0
        Hello world from process 4 of 8 on host cn205
        Hello world from process 5 of 8 on host cn205
        Hello world from process 6 of 8 on host cn205-mic0
        Hello world from process 7 of 8 on host cn205-mic0
    
    Please note: At this point the MPI communication between MIC
    accelerators on different nodes uses 1Gb Ethernet only.
    
    Using the PBS automatically generated node-files
    
    PBS also generates a set of node-files that can be used instead of
    manually creating a new one every time. Three node-files are genereated:
    
    **Host only node-file:**
     - /lscratch/${PBS_JOBID}/nodefile-cn
    MIC only node-file:
     - /lscratch/${PBS_JOBID}/nodefile-mic
    Host and MIC node-file:
     - /lscratch/${PBS_JOBID}/nodefile-mix
    
    Please note each host or accelerator is listed only per files. User has
    to specify how many jobs should be executed per node using "-n"
    parameter of the mpirun command.
    
    Optimization
    ------------
    
    For more details about optimization techniques please read Intel
    document [Optimization and Performance Tuning for Intel® Xeon Phi™
    Coprocessors](http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-1-optimization "http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-1-optimization")