Skip to content
Snippets Groups Projects
grace.md 8.61 KiB
Newer Older
  • Learn to ignore specific revisions
  • # Using NVIDIA Grace Partition
    
    For testing your application on the IBM Power partition,
    you need to prepare a job script for that partition or use the interactive job:
    
    ```console
    salloc -N 1 -c 144 -A PROJECT-ID -p p11-grace --time=08:00:00
    ```
    
    where:
    
    - `-N 1` means allocation single node,
    - `-c 144` means allocation 144 cores,
    - `-p p11-grace` is NVIDIA Grace partition,
    - `--time=08:00:00` means allocation for 8 hours.
    
    ## Available Toolchains
    
    The platform offers three toolchains:
    - Standard GCC (as a module `ml GCC`)
    - [NVHPC](https://developer.nvidia.com/hpc-sdk) (as a module `ml NVHPC`)
    - [Clang for NVIDIA Grace](https://developer.nvidia.com/grace/clang) (installed in `/opt/nvidia/clang`)
    
    !!! note
        The NVHPC toolchain showed strong results with minimal amount of tunning necessary in our initial evaluation.
    
    ### GCC Toolchain
    
    The GCC compiler seems to struggle with vectorization of short (constant length) loops, which tend to get completely unrolled/eliminated instead of being vectorized. For example simple nested loop such as
    
    ```cpp
    for(int i = 0; i < 1000000; ++i) {
        // Iterations dependent in "i"
        // ...
        for(int j = 0; j < 8; ++j) {
            // but independent in "j"
            // ...
        }
    }
    ```
    may emit scalar code for the inner loop leading to no vectorization being used at all.
    
    ### Clang (for Grace) Toolchain
    
    The Clang/LLVM tends to behave similarly, but can be guided to properly vectorize the inner loop with either flags `-O3 -ffast-math -march=native -fno-unroll-loops -mllvm -force-vector-width=8` or pragmas such as `#pragma clang loop vectorize_width(8)` and `#pragma clang loop unroll(disable)`.
    
    ```cpp
    for(int i = 0; i < 1000000; ++i) {
        // Iterations dependent in "i"
        // ...
        #pragma clang loop unroll(disable) vectorize_width(8)
        for(int j = 0; j < 8; ++j) {
            // but independent in "j"
            // ...
        }
    }
    ```
    
    !!! note
        Our basic experiments show that fixed width vectorization (NEON) tends to perform better in the case of short (register-length) loops than SVE. In cases (like above), where specified `vectorize_width` is larger than avaliable vector unit width, Clang will emit multiple NEON instructions (eg. 4 instructions will be emitted to process 8 64-bit operations in 128-bit units of Grace).
    
    ### NVHPC Toolchain
    
    The NVHPC toolchain handled aforementioned case without any additional tunning. Simple `-O3 -march=native -fast` should be therefore sufficient.
    
    ## Basic Math Libraries
    
    The basic libraries (BLAS and LAPACK) are included in NVHPC toolchain and can be used simply as `-lblas` and `-llapack` for BLAS and LAPACK respectively (`lp64` and `ilp64` versions are also included).
    
    !!! note
        The Grace platform doesn't include CUDA-capable GPU, therefore `nvcc` will fail with an error. This means that `nvc`, `nvc++` and `nvfortran` should be used instead.
    
    ### NVIDIA Performance Libraries
    
    The [NVPL](https://developer.nvidia.com/nvpl) package includes more extensive set of libraries in both sequential and multi-threaded versions:
    - BLACS: `-lnvpl_blacs_{lp64,ilp64}_{mpich,openmpi3,openmpi4,openmpi5}`
    - BLAS: `-lnvpl_blas_{lp64,ilp64}_{seq,gomp}`
    - FFTW: `-lnvpl_fftw`
    - LAPACK: `-lnvpl_lapack_{lp64,ilp64}_{seq,gomp}`
    - ScaLAPACK: `-lnvpl_scalapack_{lp64,ilp64}`
    - RAND: `-lnvpl_rand` or `-lnvpl_rand_mt`
    - SPARSE: `-lnvpl_sparse`
    
    This package should be compatible with all avaliable toolchains and includes CMake module files for easy integration into CMake-based projects. For further documentation see also [NVPL](https://docs.nvidia.com/nvpl).
    
    ## Basic Communication Libraries
    
    The OpenMPI 4 implementation is included with NVHPC toolchain and is exposed as a module (`ml OpenMPI`). The following example
    
    ```cpp
    #include <mpi.h>
    #include <sched.h>
    #include <omp.h>
    
    int main(int argc, char **argv)
    {
            int rank;
            MPI_Init(&argc, &argv);
            MPI_Comm_rank(MPI_COMM_WORLD, &rank);
            #pragma omp parallel
            {
                    printf("Hello on rank %d, thread %d on CPU %d\n", rank, omp_get_thread_num(), sched_getcpu());
            }
            MPI_Finalize();
    }
    ```
    
    can be compiled and run as follows
    
    ```console
    ml OpenMPI
    mpic++ -fast -fopenmp hello.cpp -o hello
    OMP_PROC_BIND=close OMP_NUM_THREADS=4 mpirun -np 4 --map-by slot:pe=36 ./hello
    ```
    In this configuration we run 4 ranks bound to one quarter of cores each with 4 OpenMP threads.
    
    ## Simple BLAS Application
    
    The `hello world` example application (written in `C++` and `Fortran`) uses simple stationary probability vector estimation to illustrate use of GEMM (BLAS 3 routine).
    
    Stationary probability vector estimation in `C++`:
    
    ```cpp
    #include <iostream>
    #include <vector>
    #include <chrono>
    #include "cblas.h"
    
    const size_t ITERATIONS  = 32;
    const size_t MATRIX_SIZE = 1024;
    
    int main(int argc, char *argv[])
    {
        const size_t matrixElements = MATRIX_SIZE*MATRIX_SIZE;
    
        std::vector<float> a(matrixElements, 1.0f / float(MATRIX_SIZE));
    
        for(size_t i = 0; i < MATRIX_SIZE; ++i)
            a[i] = 0.5f / (float(MATRIX_SIZE) - 1.0f);
        a[0] = 0.5f;
    
        std::vector<float> w1(matrixElements, 0.0f);
        std::vector<float> w2(matrixElements, 0.0f);
    
        std::copy(a.begin(), a.end(), w1.begin());
    
        std::vector<float> *t1, *t2;
        t1 = &w1;
        t2 = &w2;
    
        auto c1 = std::chrono::steady_clock::now();
    
        for(size_t i = 0; i < ITERATIONS; ++i)
        {
            std::fill(t2->begin(), t2->end(), 0.0f);
    
            cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, MATRIX_SIZE, MATRIX_SIZE, MATRIX_SIZE,
                        1.0f, t1->data(), MATRIX_SIZE,
                        a.data(), MATRIX_SIZE,
                        1.0f, t2->data(), MATRIX_SIZE);
    
            std::swap(t1, t2);
        }
    
        auto c2 = std::chrono::steady_clock::now();
    
        for(size_t i = 0; i < MATRIX_SIZE; ++i)
        {
            std::cout << (*t1)[i*MATRIX_SIZE + i] << " ";
        }
    
        std::cout << std::endl;
    
        std::cout << "Elapsed Time: " << std::chrono::duration<double>(c2 - c1).count() << std::endl;
    
        return 0;
    }
    ```
    
    Stationary probability vector estimation in `Fortran`:
    
    ```fortran
    program main
        implicit none
    
        integer :: matrix_size, iterations
        integer :: i
        real, allocatable, target :: a(:,:), w1(:,:), w2(:,:)
        real, dimension(:,:), contiguous, pointer :: t1, t2, tmp
        real, pointer :: out_data(:), out_diag(:)
        integer :: cr, cm, c1, c2
    
        iterations  = 32
        matrix_size = 1024
    
        call system_clock(count_rate=cr)
        call system_clock(count_max=cm)
    
        allocate(a(matrix_size, matrix_size))
        allocate(w1(matrix_size, matrix_size))
        allocate(w2(matrix_size, matrix_size))
    
        a(:,:) = 1.0 / real(matrix_size)
        a(:,1) = 0.5 / real(matrix_size - 1)
        a(1,1) = 0.5
    
        w1 = a
        w2(:,:) = 0.0
    
        t1 => w1
        t2 => w2
    
        call system_clock(c1)
    
        do i = 0, iterations
            t2(:,:) = 0.0
    
            call sgemm('N', 'N', matrix_size, matrix_size, matrix_size, 1.0, t1, matrix_size, a, matrix_size, 1.0, t2, matrix_size)
    
            tmp => t1
            t1  => t2
            t2  => tmp
        end do
    
        call system_clock(c2)
    
        out_data(1:size(t1)) => t1
        out_diag => out_data(1::matrix_size+1)
    
        print *, out_diag
        print *, "Elapsed Time: ", (c2 - c1) / real(cr)
    
        deallocate(a)
        deallocate(w1)
        deallocate(w2)
    end program main
    ```
    
    ### Using NVHPC Toolchain
    
    The C++ version of the example can be compiled with NVHPC and ran as folows
    
    ```console
    ml NVHPC
    nvc++ -O3 -march=native -fast -I$NVHPC/Linux_aarch64/$EBVERSIONNVHPC/compilers/include/lp64 -lblas main.cpp -o main
    OMP_NUM_THREADS=144 OMP_PROC_BIND=spread ./main
    ```
    
    The Fortran version is just as simple:
    
    ```console
    ml NVHPC
    nvfortran -O3 -march=native -fast -lblas main.f90 -o main.x
    OMP_NUM_THREADS=144 OMP_PROC_BIND=spread ./main
    ```
    
    !!! note
        It may be advantageous to use NVPL libraries instead NVHPC ones. For example DGEMM BLAS 3 routine from NVPL is almost 30% faster than NVHPC one.
    
    ### Using Clang (for Grace) Toolchain
    
    Similarly Clang for Grace toolchain with NVPL BLAS can be used to compile C++ version of the example.
    
    ```console
    ml NVHPC
    /opt/nvidia/clang/17.23.11/bin/clang++ -O3 -march=native -ffast-math -I$NVHPC/Linux_aarch64/$EBVERSIONNVHPC/compilers/include/lp64 -lnvpl_blas_lp64_gomp main.cpp -o main
    ```
    
    !!! note
        NVHPC module is used just for the `cblas.h` include in this case. This can be avoided by changing the code to use `nvpl_blas.h` instead.
    
    ## Additional Resources
    
    - [https://www.nvidia.com/en-us/data-center/grace-cpu-superchip/][1]
    - [https://developer.nvidia.com/hpc-sdk][2]
    - [https://developer.nvidia.com/grace/clang][3]
    - [https://docs.nvidia.com/nvpl][4]
    
    [1]: https://www.nvidia.com/en-us/data-center/grace-cpu-superchip/
    [2]: https://developer.nvidia.com/hpc-sdk
    [3]: https://developer.nvidia.com/grace/clang
    [4]: https://docs.nvidia.com/nvpl