Skip to content
Snippets Groups Projects
job-submission-and-execution.md 15.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    Job submission and execution 
    ============================
    
      
    
    Job Submission
    --------------
    
    When allocating computational resources for the job, please specify
    
    1.  suitable queue for your job (default is qprod)
    2.  number of computational nodes required
    3.  number of cores per node required
    4.  maximum wall time allocated to your calculation, note that jobs
        exceeding maximum wall time will be killed
    5.  Project ID
    6.  Jobscript or interactive switch
    
    Use the **qsub** command to submit your job to a queue for allocation of
    the computational resources.
    
    Submit the job using the qsub command:
    
    `
    $ qsub -A Project_ID -q queue -l select=x:ncpus=y,walltime=[[hh:]mm:]ss[.ms] jobscript
    `
    
    The qsub submits the job into the queue, in another words the qsub
    command creates a request to the PBS Job manager for allocation of
    specified resources. The resources will be allocated when available,
    subject to above described policies and constraints. **After the
    resources are allocated the jobscript or interactive shell is executed
    on first of the allocated nodes.**
    
    ### Job Submission Examples
    
    `
    $ qsub -A OPEN-0-0 -q qprod -l select=64:ncpus=16,walltime=03:00:00 ./myjob
    `
    
    In this example, we allocate 64 nodes, 16 cores per node, for 3 hours.
    We allocate these resources via the qprod queue, consumed resources will
    be accounted to the Project identified by Project ID OPEN-0-0. Jobscript
    myjob will be executed on the first node in the allocation.
    
     
    
    `
    $ qsub -q qexp -l select=4:ncpus=16 -I
    `
    
    In this example, we allocate 4 nodes, 16 cores per node, for 1 hour. We
    allocate these resources via the qexp queue. The resources will be
    available interactively
    
     
    
    `
    $ qsub -A OPEN-0-0 -q qnvidia -l select=10:ncpus=16 ./myjob
    `
    
    In this example, we allocate 10 nvidia accelerated nodes, 16 cores per
    node, for  24 hours. We allocate these resources via the qnvidia queue.
    Jobscript myjob will be executed on the first node in the allocation.
    
     
    
    `
    $ qsub -A OPEN-0-0 -q qfree -l select=10:ncpus=16 ./myjob
    `
    
    In this example, we allocate 10  nodes, 16 cores per node, for 12 hours.
    We allocate these resources via the qfree queue. It is not required that
    the project OPEN-0-0 has any available resources left. Consumed
    resources are still accounted for. Jobscript myjob will be executed on
    the first node in the allocation.
    
     
    
    All qsub options may be [saved directly into the
    jobscript](job-submission-and-execution.html#PBSsaved). In
    such a case, no options to qsub are needed.
    
    `
    $ qsub ./myjob
    `
    
     
    
    By default, the PBS batch system sends an e-mail only when the job is
    aborted. Disabling mail events completely can be done like this:
    
    `
    $ qsub -m n
    `
    
    Advanced job placement
    ----------------------
    
    ### Placement by name
    
    Specific nodes may be allocated via the PBS
    
    `
    qsub -A OPEN-0-0 -q qprod -l select=1:ncpus=16:host=cn171+1:ncpus=16:host=cn172 -I
    `
    
    In this example, we allocate nodes cn171 and cn172, all 16 cores per
    node, for 24 hours.  Consumed resources will be accounted to the Project
    identified by Project ID OPEN-0-0. The resources will be available
    interactively.
    
    ### Placement by CPU type
    
    Nodes equipped with Intel Xeon E5-2665 CPU have base clock frequency
    2.4GHz, nodes equipped with Intel Xeon E5-2470 CPU have base frequency
    2.3 GHz (see section Compute Nodes for details).  Nodes may be selected
    via the PBS resource attribute 
    cpu_freq .
    
      CPU Type             base freq.   Nodes                        cpu_freq attribute
      --------------  |---|---|-- ---------------------------- ---------------------
      Intel Xeon E5-2665   2.4GHz       cn[1-180], cn[208-209]   24
      Intel Xeon E5-2470   2.3GHz       cn[181-207]                23
    
     
    
    `
    $ qsub -A OPEN-0-0 -q qprod -l select=4:ncpus=16:cpu_freq=24 -I
    `
    
    In this example, we allocate 4 nodes, 16 cores, selecting only the nodes
    with Intel Xeon E5-2665 CPU.
    
    ### Placement by IB switch
    
    Groups of computational nodes are connected to chassis integrated
    Infiniband switches. These switches form the leaf switch layer of the
    [Infiniband  network](../network.html) 
    fat tree topology. Nodes sharing the leaf
    switch can communicate most efficiently. Sharing the same switch
    prevents hops in the network and provides for unbiased, most efficient
    network communication.
    
    Nodes sharing the same switch may be selected via the PBS resource
    attribute ibswitch. Values of this attribute are iswXX, where XX is the
    switch number. The node-switch mapping can be seen at [Hardware
    Overview](../hardware-overview.html) section.
    
    We recommend allocating compute nodes of a single switch when best
    possible computational network performance is required to run the job
    efficiently:
    
        qsub -A OPEN-0-0 -q qprod -l select=18:ncpus=16:ibswitch=isw11 ./myjob
    
    In this example, we request all the 18 nodes sharing the isw11 switch
    for 24 hours. Full chassis will be allocated.
    
    Advanced job handling
    ---------------------
    
    ### Selecting Turbo Boost off
    
    Intel Turbo Boost Technology is on by default. We strongly recommend
    keeping the default. 
    
    If necessary (such as in case of benchmarking) you can disable the Turbo
    for all nodes of the job by using the PBS resource attribute
    cpu_turbo_boost
    
        $ qsub -A OPEN-0-0 -q qprod -l select=4:ncpus=16 -l cpu_turbo_boost=0 -I
    
    More about the Intel Turbo Boost in the TurboBoost section
    
    ### Advanced examples
    
    In the following example, we select an allocation for benchmarking a
    very special and demanding MPI program. We request Turbo off, 2 full
    chassis of compute nodes (nodes sharing the same IB switches) for 30
    minutes:
    
        $ qsub -A OPEN-0-0 -q qprod 
        -l select=18:ncpus=16:ibswitch=isw10:mpiprocs=1:ompthreads=16+18:ncpus=16:ibswitch=isw20:mpiprocs=16:ompthreads=1 
        -l cpu_turbo_boost=0,walltime=00:30:00 
        -N Benchmark ./mybenchmark
    
    The MPI processes will be distributed differently on the nodes connected
    to the two switches. On the isw10 nodes, we will run 1 MPI process per
    node 16 threads per process, on isw20  nodes we will run 16 plain MPI
    processes.
    
    Although this example is somewhat artificial, it demonstrates the
    flexibility of the qsub command options.
    
    Job Management
    --------------
    
    Check status of your jobs using the **qstat** and **check-pbs-jobs**
    commands
    
    `
    $ qstat -a
    $ qstat -a -u username
    $ qstat -an -u username
    $ qstat -f 12345.srv11
    `
    
    Example:
    
    `
    $ qstat -a
    
    srv11:
                                                                Req'd  Req'd   Elap
    Job ID          Username Queue    Jobname    SessID NDS TSK Memory Time  S Time
    --------------- -------- --  |---|---| ------ --- --- ------ ----- - -----
    16287.srv11     user1    qlong    job1         6183   4  64    --  144:0 R 38:25
    16468.srv11     user1    qlong    job2         8060   4  64    --  144:0 R 17:44
    16547.srv11     user2    qprod    job3x       13516   2  32    --  48:00 R 00:58
    `
    
    In this example user1 and user2 are running jobs named job1, job2 and
    job3x. The jobs job1 and job2 are using 4 nodes, 16 cores per node each.
    The job1 already runs for 38 hours and 25 minutes, job2 for 17 hours 44
    minutes. The job1 already consumed 64*38.41 = 2458.6 core hours. The
    job3x already consumed 0.96*32 = 30.93 core hours. These consumed core
    hours will be accounted on the respective project accounts, regardless
    of whether the allocated cores were actually used for computations.
    
    Check status of your jobs using check-pbs-jobs command. Check presence
    of user's PBS jobs' processes on execution hosts. Display load,
    processes. Display job standard and error output. Continuously display
    (tail -f) job standard or error output.
    
    `
    $ check-pbs-jobs --check-all
    $ check-pbs-jobs --print-load --print-processes
    $ check-pbs-jobs --print-job-out --print-job-err
    
    $ check-pbs-jobs --jobid JOBID --check-all --print-all
    
    $ check-pbs-jobs --jobid JOBID --tailf-job-out
    `
    
    Examples:
    
    `
    $ check-pbs-jobs --check-all
    JOB 35141.dm2, session_id 71995, user user2, nodes cn164,cn165
    Check session id: OK
    Check processes
    cn164: OK
    cn165: No process
    `
    
    In this example we see that job 35141.dm2 currently runs no process on
    allocated node cn165, which may indicate an execution error.
    
    `
    $ check-pbs-jobs --print-load --print-processes
    JOB 35141.dm2, session_id 71995, user user2, nodes cn164,cn165
    Print load
    cn164: LOAD: 16.01, 16.01, 16.00
    cn165: LOAD:  0.01,  0.00,  0.01
    Print processes
           %CPU CMD
    cn164:  0.0 -bash
    cn164:  0.0 /bin/bash /var/spool/PBS/mom_priv/jobs/35141.dm2.SC
    cn164: 99.7 run-task
    ...
    `
    
    In this example we see that job 35141.dm2 currently runs process
    run-task on node cn164, using one thread only, while node cn165 is
    empty, which may indicate an execution error.
    
    `
    $ check-pbs-jobs --jobid 35141.dm2 --print-job-out
    JOB 35141.dm2, session_id 71995, user user2, nodes cn164,cn165
    Print job standard output:
    ======================== Job start  ==========================
    Started at    : Fri Aug 30 02:47:53 CEST 2013
    Script name   : script
    Run loop 1
    Run loop 2
    Run loop 3
    `
    
    In this example, we see actual output (some iteration loops) of the job
    35141.dm2
    
    Manage your queued or running jobs, using the **qhold**, **qrls**,
    qdel,** **qsig** or **qalter** commands
    
    You may release your allocation at any time, using qdel command
    
    `
    $ qdel 12345.srv11
    `
    
    You may kill a running job by force, using qsig command
    
    `
    $ qsig -s 9 12345.srv11
    `
    
    Learn more by reading the pbs man page
    
    `
    $ man pbs_professional
    `
    
    Job Execution
    -------------
    
    ### Jobscript
    
    Prepare the jobscript to run batch jobs in the PBS queue system
    
    The Jobscript is a user made script, controlling sequence of commands
    for executing the calculation. It is often written in bash, other
    scripts may be used as well. The jobscript is supplied to PBS **qsub**
    command as an argument and executed by the PBS Professional workload
    manager.
    
    The jobscript or interactive shell is executed on first of the allocated
    nodes.
    
    `
    $ qsub -q qexp -l select=4:ncpus=16 -N Name0 ./myjob
    $ qstat -n -u username
    
    srv11:
                                                                Req'd  Req'd   Elap
    Job ID          Username Queue    Jobname    SessID NDS TSK Memory Time  S Time
    --------------- -------- --  |---|---| ------ --- --- ------ ----- - -----
    15209.srv11     username qexp     Name0        5530   4  64    --  01:00 R 00:00
       cn17/0*16+cn108/0*16+cn109/0*16+cn110/0*16
    `
    
     In this example, the nodes cn17, cn108, cn109 and cn110 were allocated
    for 1 hour via the qexp queue. The jobscript myjob will be executed on
    the node cn17, while the nodes cn108, cn109 and cn110 are available for
    use as well.
    
    The jobscript or interactive shell is by default executed in home
    directory
    
    `
    $ qsub -q qexp -l select=4:ncpus=16 -I
    qsub: waiting for job 15210.srv11 to start
    qsub: job 15210.srv11 ready
    
    $ pwd
    /home/username
    `
    
    In this example, 4 nodes were allocated interactively for 1 hour via the
    qexp queue. The interactive shell is executed in the home directory.
    
    All nodes within the allocation may be accessed via ssh.  Unallocated
    nodes are not accessible to user.
    
    The allocated nodes are accessible via ssh from login nodes. The nodes
    may access each other via ssh as well.
    
    Calculations on allocated nodes may be executed remotely via the MPI,
    ssh, pdsh or clush. You may find out which nodes belong to the
    allocation by reading the $PBS_NODEFILE file
    
    `
    qsub -q qexp -l select=4:ncpus=16 -I
    qsub: waiting for job 15210.srv11 to start
    qsub: job 15210.srv11 ready
    
    $ pwd
    /home/username
    
    $ sort -u $PBS_NODEFILE
    cn17.bullx
    cn108.bullx
    cn109.bullx
    cn110.bullx
     
    $ pdsh -w cn17,cn[108-110] hostname
    cn17: cn17
    cn108: cn108
    cn109: cn109
    cn110: cn110
    `
    
    In this example, the hostname program is executed via pdsh from the
    interactive shell. The execution runs on all four allocated nodes. The
    same result would be achieved if the pdsh is called from any of the
    allocated nodes or from the login nodes.
    
    ### Example Jobscript for MPI Calculation
    
    Production jobs must use the /scratch directory for I/O
    
    The recommended way to run production jobs is to change to /scratch
    directory early in the jobscript, copy all inputs to /scratch, execute
    the calculations and copy outputs to home directory.
    
    `
    #!/bin/bash
    
    # change to scratch directory, exit on failure
    SCRDIR=/scratch/$USER/myjob
    mkdir -p $SCRDIR
    cd $SCRDIR || exit
    
    # copy input file to scratch 
    cp $PBS_O_WORKDIR/input .
    cp $PBS_O_WORKDIR/mympiprog.x .
    
    # load the mpi module
    module load openmpi
    
    # execute the calculation
    mpiexec -pernode ./mympiprog.x
    
    # copy output file to home
    cp output $PBS_O_WORKDIR/.
    
    #exit
    exit
    `
    
    In this example, some directory on the /home holds the input file input
    and executable mympiprog.x . We create a directory myjob on the /scratch
    filesystem, copy input and executable files from the /home directory
    where the qsub was invoked ($PBS_O_WORKDIR) to /scratch, execute the
    MPI programm mympiprog.x and copy the output file back to the /home
    directory. The mympiprog.x is executed as one process per node, on all
    allocated nodes.
    
    Consider preloading inputs and executables onto [shared
    scratch](../storage.html) before the calculation starts.
    
    In some cases, it may be impractical to copy the inputs to scratch and
    outputs to home. This is especially true when very large input and
    output files are expected, or when the files should be reused by a
    subsequent calculation. In such a case, it is users responsibility to
    preload the input files on shared /scratch before the job submission and
    retrieve the outputs manually, after all calculations are finished.
    
    Store the qsub options within the jobscript.
    Use **mpiprocs** and **ompthreads** qsub options to control the MPI job
    execution.
    
    Example jobscript for an MPI job with preloaded inputs and executables,
    options for qsub are stored within the script :
    
    `
    #!/bin/bash
    #PBS -q qprod
    #PBS -N MYJOB
    #PBS -l select=100:ncpus=16:mpiprocs=1:ompthreads=16
    #PBS -A OPEN-0-0
    
    # change to scratch directory, exit on failure
    SCRDIR=/scratch/$USER/myjob
    cd $SCRDIR || exit
    
    # load the mpi module
    module load openmpi
    
    # execute the calculation
    mpiexec ./mympiprog.x
    
    #exit
    exit
    `
    
    In this example, input and executable files are assumed preloaded
    manually in /scratch/$USER/myjob directory. Note the **mpiprocs** and
    ompthreads** qsub options, controlling behavior of the MPI execution.
    The mympiprog.x is executed as one process per node, on all 100
    allocated nodes. If mympiprog.x implements OpenMP threads, it will run
    16 threads per node.
    
    More information is found in the [Running
    OpenMPI](../software/mpi-1/Running_OpenMPI.html) and
    [Running MPICH2](../software/mpi-1/running-mpich2.html)
    sections.
    
    ### Example Jobscript for Single Node Calculation
    
    Local scratch directory is often useful for single node jobs. Local
    scratch will be deleted immediately after the job ends.
    
    Example jobscript for single node calculation, using [local
    scratch](../storage.html) on the node:
    
    `
    #!/bin/bash
    
    # change to local scratch directory
    cd /lscratch/$PBS_JOBID || exit
    
    # copy input file to scratch 
    cp $PBS_O_WORKDIR/input .
    cp $PBS_O_WORKDIR/myprog.x .
    
    # execute the calculation
    ./myprog.x
    
    # copy output file to home
    cp output $PBS_O_WORKDIR/.
    
    #exit
    exit
    `
    
    In this example, some directory on the home holds the input file input
    and executable myprog.x . We copy input and executable files from the
    home directory where the qsub was invoked ($PBS_O_WORKDIR) to local
    scratch /lscratch/$PBS_JOBID, execute the myprog.x and copy the output
    file back to the /home directory. The myprog.x runs on one node only and
    may use threads.
    
    ### Other Jobscript Examples
    
    Further jobscript examples may be found in the
    [Software](../software.1.html) section and the [Capacity
    computing](capacity-computing.html) section.